Simulink® Release Notes

Summary by Version

About Release Notes

Version 6.5 (R2006b) Simulink

Model Dependency Viewercccvuiuinnn..
Enhanced Lookup Table Blocks
Legacy Code Toolcciiiiiiiiieiinnnnnnnn
Simulink Now Uses Internal MATLAB Functions for Math
Operationsctiiiiiinniiiieennnnnnnns
Enhanced Integer Support in Math Function Block
Configuration Set Updates
Command to Initiate Data Logging During Simulation ...
Commands for Obtaining Model and Subsystem
Checksums i,
Sample Hit Time Adjusting Diagnostic
Function-Call Models Can Now Run Without Being
Referenced
Signal Builder Supports Printing of Signal Groups
Method for Comparing Simulink Data Objects
Unified Font Preferences DialogBox
Limitation on Number of Referenced Models Eliminated for
Single References,
Parameter Objects Can Now Be Used to Specify Model
Configuration Parameters
Changes to Integrator Block’s Level Reset Options
Embedded MATLAB Function Block Features and
Changesiiiiiiiiii i i e e e e

Version 6.4.1 (R2006a+) Simulink

Version 6.4 (R2006a) Simulink

Signal Object Initialization
Icon Shape Property for Logical Operator Block
Data Type Property of Parameter Objects Now Settable ..
Range-Checking for Parameter and Signal Object

Values ...
Expanded Menu Customization
Bringing the MATLAB Desktop Forward

© © ® P ® ® g0, Ou O1 O DN =

<

10

16

17
18
18
18

18
19
19

iii

iv

Contents

Converting Atomic Subsystems to Model References
Concatenate Block,
Model Advisor Changescvuuieeeinnnnnnnn
Built-in Block’s Initial Appearance Reflects Parameter
171 0 V== P
Double-Click Model Block to Open Referenced Model
Signal Logs Reflect Bus Hierarchy
Tiled Printing i
Solver Diagnostic Controls
Diagnostic Added for Multitasking Conditionally Executed
Subsystems e e
Embedded MATLAB Function Block Features and
Changesiiiiiiiii it i e e e e e

Version 6.3 (R14SP3) Simulink
Model Referencing,
Block Enhancements
Modeling Enhancements
Simulation Enhancements
User Interface Enhancements
MEX-Files on Windowscoiiiieiiinnnnnnn.
Fixed-Point Functions No Longer Supported for Use in

Signal Objectsttt
Parameter Object Expressions No Longer Supported in
DialogBoxesciiiiiiiiiiiiiii e

Version 6.2 (R14SP2) Simulink
Multiple Signals on Single Set of Axes
Logging Signals to the MATLAB Workspace
Legends that Identify Signal Traces
Displaying TicLabels
Opening Parameters DialogBox
Rootlevel Input Ports

Version 6.1 (R14SP1) Simulink
Changed Source Dialog Box Behavior
Changed Model Explorer Source Behavior
Affected Blocks i,
Model Load Warningsoiiiiieeninnnnnnnn

Version 6.0 (R14) Simulink
Model Explorerc.ciiiiiiiiiiiiiia

19
19
20

20
20
21
21
21

21

22

29
29
31
33
35
36
37

37

37

38
38
38
38
39
39
39

40
40
41
41
42

43
44

Configuration Sets,
Model Referencing i,
Model Workspacesc.ccuiiiiiiiieeennnnnnnnns
Implicit Fixed-Step Solver
The Signal and Scope Manager
Data Object Type Enhancements
Block Enhancements
Signal Enhancements
Rate Transition Enhancements
Execution Context Enhancements
Algebraic Loop Minimization
Level-2 M-File S-Functions
Panning Model Diagrams
MATLAB Data Type Conversionsoouu..
Signal Object Resolution Changes
Loading Models Containing Non-ASCII Characters
Change in Sample Time Behavior of Unary Minus Block ..
Initial Output of Conditionally Executed Subsystems

Execution Context Default Changes

Version 5.1 (R13SP1) Simulink
Sample Time Parameters Exposed
Enhanced Debugger i,
Context-Sensitive Data Typing of Tunable Parameters ...
Conditional Execution Behavior
Function-Call Subsystem Enhancements
External Increment Option Added To For Iterator Block ..
Performance Improvements

Version 5.0.1 (R13.0.1) Simulink
Tunable Parameters for Unified Fixed-Point Blocks

Version 5.0 (R13) Simulink
Block Enhancements
Simulation Enhancements

Modeling Enhancements
Platform Limitations for HPand IBM

Version 4.1 (R12+) Simulink
Simulink Editor i i
Modeling Enhancements
Simulink Debugger i ...

44
44
45
46
46
46
47
50
51
52
52
52
53
53
53
54
55
55
55

56
56
57
59
61
64
64
65

67
67

70
70
75
76
79

80
80
82
85

Block Libraryc.uiiiiiiiiiiiiiiiinnnnnnnn 86

Triggered Subsystemsiiiiiiiinnnnnn. 88
Running Simulink 4.1 Models in Simulink 4.0 89
Direct Feedthrough Compensation Deprecated 90
Improved Invalid Model Configuration Diagnostics 90
Bug Fixes ...ttt e e e 91
Version 4.0 (R12) Simulink 93
Simulink Editor 93
Modeling Enhancements 96
Simulink Debuggerc ... 98
Block Libraryc.cuiiiiiniiiiiiieiiennnnnnn 98
SB 2SS e e e 101
Port Name Property 102

Compatibility and Limitations Summary for
Simulink 103

vi Contents

Simulink® Release Notes

Summary by Version

This table provides quick access to what’s new in each version. For
clarification, see “About Release Notes” on page 2.

Version New Features | Version Fixed Bugs Related
(Release) and Changes Compatibility | and Known Documentation
Considerations | Problems at Web Site
Latest Version | Yes Yes Bug Reports Printable
V6.5 (R2006b) Details Summary Includes fixes Release Notes:
PDF
Current product
documentation
V6.4.1 (R2006a+) | No No Bug Reports No
V6.4 (R2006a) Yes Yes Bug Reports No
Details Summary
V6.3 (R14SP3) Yes Yes Bug Reports No
Details Summary
V6.2 (R14SP2) Yes Yes Bug Reports No
Details Summary
V6.1 (R14SP1) Yes Yes Fixed Bugs No
Details Summary
V6.0 (R14) Yes Yes Fixed Bugs No
Details Summary
V5.1 (R13SP1) Yes No Fixed Bugs Printable
Details Release Notes:

PDF
V5.1 product
documentation

http://www.mathworks.com/support/bugreports/?product=SL&release=R2006b
http://www.mathworks.com/access/helpdesk/help/pdf_doc/simulink/rn.pdf
http://www.mathworks.com/access/helpdesk/help/toolbox/simulink/
http://www.mathworks.com/support/bugreports/?product=SL&release=R2006a%2B
http://www.mathworks.com/support/bugreports/?product=SL&release=R2006a
http://www.mathworks.com/support/bugreports/?product=SL&release=R14SP3
http://www.mathworks.com/support/bugreports/?product=SL&release=R14SP2
http://www.mathworks.com/access/helpdesk_r13/help/pdf_doc/simulink/rn.pdf
http://www.mathworks.com/access/helpdesk_r13/help/toolbox/simulink/simulink.html

Simulink® Release Notes

Version New Features | Version Fixed Bugs Related
(Release) and Changes Compatibility | and Known Documentation
Considerations | Problems at Web Site
V5.0.1 (R13.0.1) | No Yes Fixed Bugs No
Summary
V5.0 (R13) Yes Yes Fixed Bugs No
Details Summary
V4.1 (R12+) Yes Yes Fixed Bugs No
Details Summary
V4.0 (R12) Yes Yes No No
Details Summary

About Release Notes

Use release notes when upgrading to a newer version to learn about new
features and changes, and the potential impact on your existing files and
practices. Release notes are also beneficial if you use or support multiple

versions.

If you are not upgrading from the most recent previous version, review release
notes for all interim versions, not just for the version you are installing. For
example, when upgrading from V1.0 to V1.2, review the New Features and
Changes, Version Compatibility Considerations, and Bug Reports for V1.1

and V1.2.

New Features and Changes

These include

e New functionality

® Changes to existing functionality

® Changes to system requirements (complete system requirements for the
current version are at the MathWorks Web site)

http://www.mathworks.com/products/simulink/requirements.html

Summary by Version

® Any version compatibility considerations associated with each new feature
or change

Version Compatibility Considerations and Limitations

When a new feature or change introduces a known incompatibility between
versions or limitations for new or existing features, its description includes a
Compatibility Considerations and Limitations subsection that details
the impact. For a list of all new features and changes that have compatibility
impact or limitations, see the “Compatibility and Limitations Summary for
Simulink” on page 103.

Compatibility issues that become known after the product has been released
are added to Bug Reports at the MathWorks Web site. Because bug fixes can
sometimes result in incompatibilities, also review fixed bugs in Bug Reports
for any compatibility impact.

Fixed Bugs and Known Problems

MathWorks Bug Reports is a user-searchable database of known problems,
workarounds, and fixes. The MathWorks updates the Bug Reports database
as new problems and resolutions become known, so check it as needed for
the latest information.

Access Bug Reports at the MathWorks Web site using your MathWorks
Account. If you are not logged in to your MathWorks Account when you link
to Bug Reports, you are prompted to log in or create an account. You then can
view bug fixes and known problems for R14SP2 and more recent releases.

Related Documentation at Web Site

Printable Release Notes (PDF). You can print release notes from the PDF
version, located at the MathWorks Web site. The PDF version does not
support links to other documents or to the Web site, such as to Bug Reports.
Use the browser-based version of release notes for access to all information.

Product Documentation. At the MathWorks Web site, you can access
complete product documentation for the current version and some previous
versions, as noted in the summary table.

Simulink® Release Notes

Version 6.5 (R2006b) Simulink

This table summarizes what’s new in Version 6.5 (R2006b):

New Features and | Version Fixed Bugs and Related
Changes Compatibility Known Problems Documentation at
Considerations Web Site

Yes Yes Bug Reports Printable

Details below Summary Includes fixes Release Notes:
PDF
Current product
documentation

New features and changes introduced in this version are

® “Model Dependency Viewer” on page 5
¢ “Enhanced Lookup Table Blocks” on page 5
¢ “Legacy Code Tool” on page 5

¢ “Simulink Now Uses Internal MATLAB Functions for Math Operations”
on page 6

¢ “Enhanced Integer Support in Math Function Block” on page 6

® “Configuration Set Updates” on page 6

* “Command to Initiate Data Logging During Simulation” on page 7

¢ “Commands for Obtaining Model and Subsystem Checksums” on page 8

e “Sample Hit Time Adjusting Diagnostic” on page 8

¢ “Function-Call Models Can Now Run Without Being Referenced” on page 8
® “Signal Builder Supports Printing of Signal Groups” on page 8

e “Method for Comparing Simulink Data Objects” on page 9

e “Unified Font Preferences Dialog Box” on page 9

¢ “Limitation on Number of Referenced Models Eliminated for Single
References” on page 9

http://www.mathworks.com/support/bugreports/?product=SL&release=R2006b
http://www.mathworks.com/access/helpdesk/help/pdf_doc/simulink/rn.pdf
http://www.mathworks.com/access/helpdesk/help/toolbox/simulink/

Version 6.5 (R2006b) Simulink

e “Parameter Objects Can Now Be Used to Specify Model Configuration
Parameters” on page 9

® “Changes to Integrator Block’s Level Reset Options” on page 10
¢ “Embedded MATLAB Function Block Features and Changes” on page 10

Model Dependency Viewer

The Model Dependency Viewer displays a dependency view of a model
that shows models and block libraries directly or indirectly referenced by
the model. The dependency view allows you to quickly determine your
model’s dependencies on referenced models and block libraries. See “Model
Dependency Viewer” for more information.

Enhanced Lookup Table Blocks

This release replaces the PreLookup Index Search and Interpolation (n-D)
Using PreLookup blocks with two new blocks: Prelookup and Interpolation
Using Prelookup. The new blocks provide fixed-point arithmetic, consistency
checking, more efficient code generation, and other enhancements over the
blocks they replace.

Compatibility Considerations

The MathWorks plans on obsoleting the PreLookup Index Search and
Interpolation (n-D) Using PreLookup blocks in a future release. In the
meantime, the MathWorks will continue to support and enhance these blocks.
For example, this release improves the precision with which the PreLookup
Index Search block computes its fraction value if its Index search method
parameter specifies Evenly Spaced Points.

We recommend that you use the Prelookup and Interpolation Using Prelookup
blocks for all new model development.

Legacy Code Tool

The Legacy Code Tool generates an S-function from existing C code and
specifications that you supply. It enables you to transform your C functions
into C MEX S-functions for inclusion in a Simulink model. See “Legacy Code
Tool” in “Writing S-Functions” for more information.

Simulink® Release Notes

Simulink Now Uses Internal MATLAB Functions for
Math Operations

In previous releases, Simulink used the host compiler’s C++ Math Library
functions to perform most mathematical operations on floating-point data.
Some of those functions produced results that were slightly inconsistent
with MATLAB®. In this release, Simulink calls the same internal routines
that MATLAB calls for most trigonometric, exponential, and rounding and
remainder operations involving floating-point data. This ensures that when
Simulink and MATLAB operate on the same platform, they produce the same
numerical results.

In particular, Simulink now performs mathematical operations with the same
internal functions that MATLAB uses to implement the following M-functions:
® sin, cos, tan

® asin, acos, atan, atan2

® sinh, cosh, tanh

® asinh, acosh, atanh

® log, log2, log10

®* mod, rem

® power

Note By default, in this release Real-Time Workshop® continues to use C
Math Library functions in the code that it generates from a Simulink model.

Enhanced Integer Support in Math Function Block

The sqrt operation in the Math Function block now supports built-in integer
data types.

Configuration Set Updates

This release includes the following changes to model configuration parameters
and configuration sets.

Version 6.5 (R2006b) Simulink

¢ This release includes a new command, openDialog, that displays the
Configuration Parameters dialog box for a specified configuration set.
This command allows display of configuration sets that are not attached to
any model.

¢ The attachConfigSet command now includes an allowRename option that
determines how the command handles naming conflicts when attaching a
configuration set to a model.

e This release includes a new attachConfigSetCopy command that attaches
a copy of a specified configuration set to a model.

¢ The new Sample hit time adjusting diagnostic controls whether
Simulink notifies you when the solver has to adjust a sample time specified
by your model to solve the model. The associated model parameter is
TimeAdjustmentMsg.

® The default value of the Multitask data store diagnostic has changed
from Warning to Error for new models. This change does not affect existing
models.

¢ The name of the Block reduction optimization parameter has changed
to Block reduction.

Command to Initiate Data Logging During Simulation
The command

set_param(bdroot, 'SimulationCommand', 'WriteDatalogs')

writes all logging variables to the base workspace during simulation.

Simulink® Release Notes

Commands for Obtaining Model and Subsystem
Checksums

This release includes commands for obtaining model and subsystem
checksums.

® Simulink.BlockDiagram.getChecksum

Get checksum for a model. Simulink Accelerator uses this checksum to
control regeneration of simulation targets. You can use this command to
diagnose target rebuild problems.

® Simulink.SubSystem.getChecksum

Get checksum for a subsystem. Real-Time Workshop uses this checksum
to control reuse of code generated from a subsystem that occurs more
than once in a model. You can use the checksum to diagnose code reuse
problems. See “Determining Why Subsystem Code Is Not Reused”.

Sample Hit Time Adjusting Diagnostic

The Sample hit time adjusting diagnostic controls whether Simulink
notifies you when the solver has to adjust a sample time specified by
your model to solve the model. The associated model parameter is
TimeAdjustmentMsg.

Function-Call Models Can Now Run Without Being
Referenced

This release allows you to simulate a function-call model, i.e., a model that
contains a root-level function-call trigger block, without having to reference
the model. In previous releases, the function-call model had to be referenced
by another model in order to be simulated.

Signal Builder Supports Printing of Signal Groups

This release adds printing options to the Signal Builder block’s editor. It
allows you to print waveforms displayed in the editor to a printer, file, the
clipboard, or a figure window. For details, see “Printing, Exporting, and
Copying Waveforms”.

Version 6.5 (R2006b) Simulink

Method for Comparing Simulink Data Obijects

This release introduces an isContentEqual method for Simulink data objects
that allows you to determine whether a Simulink data object has the same
property values as another Simulink data object. For more information, see
“Comparing Data Objects”.

Unified Font Preferences Dialog Box

In this release, the Simulink Preferences dialog box displays font settings
for blocks, lines, and annotations on a single pane instead of on separate
tabbed panes as in previous releases. This simplifies selection of font
preferences.

Limitation on Number of Referenced Models
Eliminated for Single References

In previous releases, all distinct models referenced in a model hierarchy
counted against the limitation imposed by Microsoft Windows on the number
of distinct referenced models that can occur in a hierarchy. In this release,
models configured to be instantiable only once do not account against this
limit. This means that a model hierarchy can reference any number of
distinct models on Windows platforms as long as they are referenced only
once and are configured to be instantiable only once (see “Referencing Model
Limitations” for more information).

Parameter Objects Can Now Be Used to Specify
Model Configuration Parameters

This release allows you to use Simulink.Parameter objects to specify model
configuration as well as block parameters. For example, you can specify

a model’s fixed step size as Ts and its stop time as 20*Ts where Ts is a
workspace variable that references a parameter object. When compiling

a model, Simulink replaces a reference to a parameter object in a model
configuration parameter expression with the object’s value.

Compatibility Considerations

In previous releases, you could use expressions of the form p.Value(),
where p references a parameter object, in model configuration parameter

Simulink® Release Notes

10

expressions. Such expressions cause expression evaluation errors in this
release when you compile a model. You should replace such expressions with a
simple reference to the parameter object itself, i.e., replace p.Value () with p.

Changes to Integrator Block’s Level Reset Options

This release changes the behavior of the level reset option of the Integrator
block. In releases before Simulink 6.3, the level reset option resets the
integrator’s state if the reset signal is nonzero or changes from nonzero in the
previous time step to zero in the current time step. In Simulink 6.3, 6.4, and
6.4.1, the option resets the integrator only if the reset signal is nonzero. This
release restores the level reset behavior of releases that preceded Simulink
6.3. It also adds a 1level hold option that behaves like the level reset option
of Simulink 6.3, 6.4, and 6.4.1.

Compatibility Considerations

A model that uses the level reset option could produce results that differ in
this release from those produced in Simulink 6.3, 6.4, and 6.4.1. To reproduce
the results of previous releases, change the model to use the new level
hold option instead.

Embedded MATLAB Function Block Features and
Changes

Support for Structures

You can now define structures as inputs, outputs, local, and persistent
variables in Embedded MATLAB Function blocks. With support for
structures, Embedded MATLAB gives you the ability to read and write
Simulink bus signals at inputs and outputs of Embedded MATLAB Function
blocks. See “Using Structures in Embedded MATLAB”in the online Simulink
Reference documentation.

Embedded MATLAB Editor Analyzes Code with M-Lint
The Embedded MATLAB Editor uses the MATLAB M-Lint Code Analyzer to
automatically check your Embedded MATLAB function code for errors and

recommend corrections. The editor displays an M-Lint bar that highlights
offending lines of code and displays Embedded MATLAB diagnostics as well

Version 6.5 (R2006b) Simulink

as MATLAB messages. See “Using M-Lint with Embedded MATLAB” in the
online Simulink Reference documentation.

New Embedded MATLAB Runtime Library Functions
Embedded MATLAB Function blocks provide 36 new runtime library

functions in the following categories:

e “Data Analysis” on page 11

e “Discrete Math” on page 11

e “Exponential” on page 12

¢ “Interpolation and Computational Geometry” on page 12
e “Linear Algebra” on page 12

e “Logical” on page 13

e “Specialized Plotting” on page 13

¢ “Transforms” on page 13

* “Trigonometric” on page 13
Data Analysis.

® cov
o ifftshift
* std

® var
Discrete Math.
® gcd

e Icm

11

Simulink® Release Notes

12

Exponential.

® expmi

® log10

® logip

® log2

® nextpow2
®* nthroot
® reallog
® realpow

® realsqrt
Interpolation and Computational Geometry.

® cart2pol
® cart2sph
® pol2cart
® sph2cart

Linear Algebra.

® cond

® det

® jpermute
® kron

® permute
® planerot
* rand

® randn

® rank

Version 6.5 (R2006b) Simulink

® shiftdim
® squeeze
® subspace

* trace

Logical.

® isstruct
Specialized Plotting.
® histc
Transforms.

® bitrevorder
Trigonometric.

® hypot

New Requirement for Calling MATLAB Functions from
Embedded MATLAB

To call external MATLAB functions from Embedded MATLAB Function
blocks, you must first declare the functions to be extrinsic. (External MATLAB
functions are functions that have not been implemented in the Embedded
MATLAB runtime library.) Embedded MATLAB does not compile or generate
code for extrinsic functions; instead, it sends the function to MATLAB for
execution during simulation. There are two ways to call MATLAB functions
as extrinsic functions in Embedded MATLAB Function blocks:

e Use the new construct eml.extrinsic to declare the function extrinsic

e (Call the function using feval

For details, see “Calling MATLAB Functions” in the online Simulink
Reference documentation.

13

Simulink® Release Notes

14

Compatibility Considerations. Currently, Embedded MATLAB uses
implicit rules to handle calls to external functions:

® For simulation, Embedded MATLAB sends the function to MATLAB for
execution

¢ For code generation, Embedded MATLAB checks whether the function
affects the output of the Embedded MATLAB function in which it is
called. If there is no effect on output, Embedded MATLAB proceeds with
code generation, but excludes the function call from the generated code.
Otherwise, Embedded MATLAB generates a compiler error.

In future releases, Embedded MATLAB will apply these rules only to external
functions that you call as extrinsic functions. Otherwise, Embedded MATLAB
will compile external functions by default, potentially causing unpredictable
behavior or generating errors. For reliable simulation and code generation,
The MathWorks recommends that you call external MATLAB functions as
extrinsic functions.

Type and Size Mismaich of Values Returned from MATLAB
Functions Generates Error

Embedded MATLAB Function blocks now generate an error if the type

and size of a value returned by a MATLAB function does not match the
predeclared type and size.

Compatibility Considerations. In previous releases, Embedded MATLAB
attempted to silently convert values returned by MATLAB functions

to predeclared data type and sizes if a mismatch occurred. Now, such
mismatches always generate an error, as in this example:

X = int8(zeros(3,3)); % Predeclaration
X eval('5'); % Calls MATLAB function eval

This code now generates an error because the Embedded MATLAB function
predeclares x as a 3—by-3 matrix, but MATLAB function returns x as a scalar
double. To avoid errors, reconcile predeclared data types and sizes with the
actual types and sizes returned by MATLAB function calls in your Embedded
MATLAB Function blocks.

Version 6.5 (R2006b) Simulink

Embedded MATLAB Function Blocks Cannot Output Character
Data

Embedded MATLAB Function blocks now generate an error if any of its
outputs is character data.

Compatibility Considerations. In the previous release, Embedded
MATLAB silently cast character array outputs to int8 scalar arrays. This
behavior does not match MATLAB, which represents characters in 16-bit
unicode.

15

Simulink® Release Notes

16

Version 6.4.1 (R2006a+) Simulink

This table summarizes what’s new in V6.4.1 (R2006a+):

New Features and | Version Fixed Bugs and Related

Changes Compatibility Known Problems Documentation at
Considerations Web Site

No No Bug Reports No

at Web site

http://www.mathworks.com/support/bugreports/?product=SL&release=R2006a%2B

Version 6.4 (R2006a) Simulink

Version 6.4 (R2006a) Simulink

This table summarizes what’s new in V6.4 (R2006a):

New Features and | Version Fixed Bugs and Related
Changes Compatibility Known Problems Documentation at
Considerations Web Site
Yes Yes—Details labeled Bug Reports No
Details below as Compatibility at Web site
Considerations
below. See also
Summary.

New features and changes introduced in this version are

“Signal Object Initialization” on page 18

“Icon Shape Property for Logical Operator Block” on page 18

“Data Type Property of Parameter Objects Now Settable” on page 18
“Range-Checking for Parameter and Signal Object Values” on page 18
“Expanded Menu Customization” on page 19

“Bringing the MATLAB Desktop Forward” on page 19

“Converting Atomic Subsystems to Model References” on page 19
“Concatenate Block” on page 19

“Model Advisor Changes” on page 20

“Built-in Block’s Initial Appearance Reflects Parameter Settings” on page
20

“Double-Click Model Block to Open Referenced Model” on page 20
“Signal Logs Reflect Bus Hierarchy” on page 21

“Tiled Printing” on page 21

“Solver Diagnostic Controls” on page 21

“Diagnostic Added for Multitasking Conditionally Executed Subsystems”
on page 21

17

http://www.mathworks.com/support/bugreports/?product=SL&release=R2006a

Simulink® Release Notes

18

¢ “Embedded MATLAB Function Block Features and Changes” on page 22

Signal Object Initialization

This release introduces the use of signal objects to specify initial values

for signals and states. This allows you to initialize signals or states in the
model, not just those generated by blocks that have initial condition or value
parameters. For details, see “Using Signal Objects to Initialize Signals and
Discrete States” in the online Simulink documentation.

Icon Shape Property for Logical Operator Block

The Logical Operator block’s parameter dialog box contains a new property,
Icon shape, settings for which can be either rectangular or distinctive. If
you select rectangular (the default), the block appears as it does in previous
releases. If you select distinctive, the block appears as the IEEE standard
graphic symbol for the selected logic operator.

Data Type Property of Parameter Objects Now
Settable

This release allows you to set the data type of a Simulink.Parameter object
via either its Value property or via its Data type property. In previous
releases, you could specify the data type of a parameter object only by setting
the object’s Value property to a typed value expression.

Range-Checking for Parameter and Signal Object
Values

This release introduces range checking for Simulink.Parameter and
Simulink.Signal objects. Simulink checks whether a parameter’s Value or
a signal’s Initial value falls within the values you specify for the object’s
Minimum and Maximum properties. If not, Simulink generates a warning
or error.

Compatibility Considerations

Previous releases ignored such violations since the Minimum and Maximum
properties were intended for use in documenting parameter and signal
objects. In this release, Simulink displays a warning if you load a parameter

Version 6.4 (R2006a) Simulink

object or a signal object does not specify a valid range or its value falls outside
the specified range. If you get such a warning, change the parameter or signal
object’s Value or Minimum or Maximum values so that the Value falls within a
valid range.

Expanded Menu Customization

The previous release of Simulink allows you to customize the Simulink editor’s
Tools menu. This release goes a step further and allows you to customize any
Simulink (or Stateflow®) editor menu (see “Customizing the Simulink User
Interface” in the online Simulink documentation).

Bringing the MATLAB Desktop Forward

The Model Editor’s View menu includes a new command, MATLAB
Desktop, that brings the MATLAB desktop to the front of the windows
displayed on your screen.

Converting Atomic Subsystems to Model References

This release adds a command, Convert to Model Block, to the context
(right-click) menu of an atomic subsystem (see Atomic Subsystem). Selecting
this command converts an atomic subsystem to a model reference (see
“Converting Subsystems to Model References” in the online Simulink
documentation for more information).

Concatenate Block

The new Concatenate block concatenates its input signals to create a single
output signal whose elements occupy contiguous locations in memory. The
block typically uses less memory than the Matrix Concatenation block that it
replaces, thereby reducing model memory requirements.

Compatibility Considerations

This release replaces obsolete Matrix Concatenation blocks with Concatenate
blocks when loading models created in previous releases.

19

Simulink® Release Notes

20

Model Advisor Changes

Model Advisor Tasks Introduced

This release introduces Model Advisor tasks for referencing models and
upgrading a model to the current version of Simulink . See “Consulting the
Model Advisor” in the online Simulink documentation for more information.

Model Advisor API

This release introduces an application program interface (API) that enables
you to run the Model Advisor from the MATLAB command line or from M-file
programs. For example, you can use the API to create M-file programs that
determine whether a model passes selected Model Advisor checks whenever
you open, simulate, or generate code from the model. See “Running the Model
Advisor Programmatically” in the online Simulink documentation for more
information.

Built-in Block’s Initial Appearance Reflects Parameter
Settings

In this release, when you load a model containing nonmasked, built-in blocks
whose appearance depends on their parameter settings, such as the Selector

block, the appearance of the blocks reflect their parameter settings. You no
longer have to update the model to update the appearance of such blocks.

Compatibility Considerations

In previous releases, model or block callback functions that use set_param to
set a built-in, nonmasked block’s parameters could silently put the block in an
unusable state. In this release, such callbacks will trigger error messages if
they put blocks in an unusable state.

Double-Click Model Block to Open Referenced Model

In this release, double-clicking a Model block opens the model referenced by
the block instead of the block’s parameter dialog box as in previous releases.

Version 6.4 (R2006a) Simulink

Signal Logs Reflect Bus Hierarchy

In this release, signal logs containing buses reflect the structure of the
buses themselves instead of flattening bus data as in previous releases (see
Simulink.TsArray).

Tiled Printing

This release introduces a tiled printing option that allows you to distribute a
block diagram over multiple pages. You can control the number of pages over
which Simulink distributes the block diagram, and hence, the total size of the
printed image. See “Tiled Printing” in the online Simulink documentation
for more information.

Solver Diagnostic Controls

In this release, the Configuration Parameters dialog box includes the
following enhancements:

¢ The Diagnostics pane contains a new diagnostic, Consecutive zero
crossings violation, that alerts you if Simulink detects the maximum
number of consecutive zero crossings allowed. You can specify the criteria
that Simulink uses to trigger this diagnostic using two new Solver
diagnostic controls on the Solver pane:

= Consecutive zero crossings relative tolerance
= Number of consecutive zero crossings allowed

For more information, see “Preventing Excessive Zero Crossings” in the
online Simulink documentation.

¢ The Solver pane contains a new solver diagnostic control, Number of
consecutive min step size violations allowed, that Simulink uses to
trigger the Min step size violation diagnostic (see “Number of consecutive
min step size violations allowed” in the online Simulink documentation).

Diagnostic Added for Multitasking Conditionally
Executed Subsystems

This release adds a sample-time diagnostic that detects an enabled subsystem
in multitasking solver mode that operates at multiple rates or a conditionally
executed subsystem that contain an asynchronous subsystem. Such

21

Simulink® Release Notes

22

subsystems can cause corrupted data or non-deterministic behavior in a
real-time system using code generated from the model. See the documentation
for the Multitask Conditionally Executed Subsystem diagnostic for more
information.

Embedded MATLAB Function Block Features and
Changes

Option to Disable Saturation on Integer Overflow

The properties dialog for Embedded MATLAB Function blocks provides a new
Saturate on Integer Overflow check box that lets you disable saturation on
integer overflow to generate more efficient code. When you enable saturation
on integer overflow, Embedded MATLAB Function blocks add additional
checks in the generated code to detect integer overflow or underflow.
Therefore, it is more efficient to disable this option if your algorithm does

not rely on overflow behavior. For more information, see “Setting Embedded
MATLAB Function Properties” in the online Simulink documentation.

Nontunable Option Allows Use of Parameters in Constant
Expressions

The Data properties dialog for the Embedded MATLAB Function block
provides a new Tunable check box that lets you specify the tunability (see
“Tunable Parameters” in the online Simulink documentation) of a workspace
variable or mask parameter used as data in Embedded MATLAB code. The
option is checked by default. Unchecking the option allows you to use a
workspace variable or mask parameter as data wherever Embedded MATLAB
requires a constant expression, such as a dimension argument to the zeros
function. For more information, see “Adding Data to an Embedded MATLAB
Function Block” in the online Simulink documentation.

Enhanced Support for Fixed-Point Arithmetic

Embedded MATLAB Function blocks support the new fixed-point features
introduced in Version 1.4 (R2006a) of the Fixed-Point Toolbox, including
[Slope Bias] scaling (see “Specifying Fixed-Point Data Properties” in the
online Simulink documentation). For information about the features added to
the Fixed-Point Toolbox, see “Fixed-Point Toolbox Release Notes”.

Version 6.4 (R2006a) Simulink

Support for Integer Division

Embedded MATLAB Function blocks support the new MATLAB function
idivide, which performs integer division with a variety of rounding options.
It is recommended that the rounding option used for integer division in
Embedded MATLAB Function blocks match the rounding option in the parent
Simulink model.

The default rounding option for idivide is 'fix', which rounds toward
zero. This option corresponds to the choice Zero in the submenu for Signed
integer division rounds to:, a parameter that you can set in the Hardware
Implementation Pane of the Configuration Parameters dialog in Simulink (see
“Hardware Implementation Pane” in the online Simulink documentation).

If this parameter is set to Floor in the Simulink model that contains the
Embedded MATLAB Function block, it is recommended that you pass the
rounding option 'floor' to idivide in the block.

For a complete list of Embedded MATLAB runtime library functions provided
in this release, see “New Embedded MATLAB Runtime Library Functions”
on page 23.

New Embedded MATLAB Runtime Library Functions

Embedded MATLAB Function blocks provide new runtime library functions
in the following categories:

® “Integer Arithmetic” on page 23
¢ “Linear Algebra” on page 24

® “Logical” on page 24

* “Polynomial” on page 25

* “Trigonometric” on page 25

Integer Arithmetic.

e idivide

23

Simulink® Release Notes

Linear Algebra.

® compan

® dot

® eig

e fliplr

e flipud

* fregspace
® hilb

® ind2sub
® invhilb
e linspace
® logspace
® magic

® median

® meshgrid
® pascal

° qr

® rot90

® sub2ind
® toeplitz
® vander

e wilkinson
Logical.

® jisequal
® jisinteger

® jslogical

24

Version 6.4 (R2006a) Simulink

Polynomial.

® polyfit
® polyval

Trigonometric.

acosd
acot
acotd
acoth
acsc
acscd
acsch
asec
asecd
asech
asind
atand
cosd
cot
cotd
coth
csc
cscd
csch
sec
secd

sech

25

Simulink® Release Notes

26

® sind

e tand

Setting FIMATH Cast Before Sum to False No Longer Supported
in Embedded MATLAB Function Blocks

You can no longer set the FIMATH property CastBeforeSum to false for
fixed-point data in Embedded MATLAB Function blocks.

Compatibility Considerations. The reason for the restriction is that
Embedded MATLAB does not produce the same numerical results as
MATLAB when CastBeforeSum is false. In the previous release, Embedded
MATLAB Function blocks set CastBeforeSum to false by default for the
default FIMATH object. If you have existing models that contain Embedded
MATLAB Function blocks in which CastBeforeSumis false, you will get an
error when you compile or update your model. To correct the issue, you must
set CastBeforeSum to true. To automate this process, you can run the utility
slupdate either from the Model Advisor or by typing the following command
at the MATLAB command line:

slupdate ('modelname')

where ‘modelname’ is the name of the model containing the Embedded
MATLAB Function block that generates the error. slupdate prompts you to
update this property by selecting one of these options:

Option Action

Yes Updates the first occurrence of CastBeforeSum=false in
Embedded MATLAB Function blocks in the offending model and
then prompts you for each subsequent one found in the model.

No Does not update any occurrences of CastBeforeSum=false in
the offending model.

All Updates all occurrences of CastBeforeSum=false in the
offending model.

Version 6.4 (R2006a) Simulink

Note slupdate detects CastBeforeSum=false only in default FIMATH objects
defined for Simulink signals in Embedded MATLAB Function blocks. If
you modified the FIMATH object in an Embedded MATLAB Function block,
update CastBeforeSum manually in your model and fix the errors as they
are reported.

Type Mismatch of Scalar Output Data in Embedded MATLAB
Function Blocks Generates Error

Embedded MATLAB Function blocks now generate an error if the output type
inferred by the block does not match the type you explicitly set for a scalar
output.

Compatibility Considerations. In previous releases, a silent cast was
inserted from the computed type to the set type when mismatches occurred.
In most cases, you should not need to set the output type for Embedded
MATLAB Function blocks. When you do, insert an explicit cast in your
Embedded MATLAB script. For example, suppose you declare a scalar output
y to be of type int8, but its actual type is double. Replace y with a temporary
variable ¢ in your script and then add the following code:

y = int8(t);

Implicit Parameter Type Conversions No Longer Supported in
Embedded MATLAB Function Blocks

Embedded MATLAB Function blocks now generate an error if the type of a
parameter inferred by the block does not match the type you explicitly set
for the parameter.

Compatibility Considerations. In the previous release, if the type you

set for a parameter did not match the actual parameter value, Embedded
MATLAB implicitly cast the parameter to the specified type. Now you receive
a compile-time error when type mismatches occur for parameters defined in
Embedded MATLAB Function blocks.

27

Simulink® Release Notes

28

There are two workarounds:

® Change the scope of the data from Parameter to Input. Then, connect to
the input port a Constant block that brings in the parameter and casts it
to the desired type.

¢ (Cast the parameter inside your Embedded MATLAB function to the desired
type.

Fixed-Point Parameters Not Supported

Embedded MATLAB generates a compile-time error if you try to bring a fi
object defined in the base workspace into Embedded MATLAB Function
blocks as a parameter.

There are two workarounds:

¢ Change the scope of the data from Parameter to Input. Then, connect to
the input port a Constant block that brings in the parameter and casts
it to fixed-point type.

¢ (Cast the parameter inside your Embedded MATLAB function to fixed-point
type.

Embedded MATLAB Function Blocks Require C Compiler for
Windows 64

No C compiler ships with MATLAB and Simulink on Windows 64. Because
Embedded MATLAB Function blocks perform simulation through code
generation, you must supply your own MEX-supported C compiler to use these

blocks. The C compilers available at the time of this writing for Windows 64
include Microsoft Visual Studio 2005 and the Microsoft Platform SDK.

Version 6.3 (R14SP3) Simulink

Version 6.3 (R14SP3) Simulink

This table summarizes what’s new in V6.3 (R14SP3):

New Features and | Version Fixed Bugs and Related

Changes Compatibility Known Problems Documentation at
Considerations Web Site

Yes Yes—Details labeled Bug Reports No

Details below

as Compatibility
Considerations,
below. See also
Summary.

at Web site

New features and changes introduced in this version are organized by these
topics:

® “Model Referencing” on page 29

Model Referencing

“Block Enhancements” on page 31

“Modeling Enhancements” on page 33

“Simulation Enhancements” on page 35

“User Interface Enhancements” on page 36

“MEX-Files on Windows” on page 37

“Fixed-Point Functions No Longer Supported for Use in Signal Objects”

on page 37

“Parameter Object Expressions No Longer Supported in Dialog Boxes”

on page 37

This topic contains new features and changes for model reference:

29

http://www.mathworks.com/support/bugreports/?product=SL&release=R14SP3

Simulink® Release Notes

30

New Features and Changes

Function-Call Models. This release allows you to use a block capable

of emitting a function-call signal, such as a Function-Call Generator or a
custom S-function, in one model to control execution of another model during
the current time step. See “Function-Call Models” in the Using Simulink
documentation for more information.

Using Noninlined S-Functions in Referenced Models. This release adds
limited support for use of noninlined S-functions in models referenced by
other models. For example, you can simulate a model that references models
containing noninlined S-functions. However, you cannot use the Real-Time
Workshop to generate a standalone executable (Real-Time Workshop target)
for the model. See “Model Referencing Limitations” in the Simulink user’s
guide documentation for information on other limitations.

Referenced Models Without Root 1/O Can Inherit Sample Times.
Previous releases of Simulink do not allow referenced models without
root-level input or output ports to inherit their sample time. This release
removes this restriction.

Referenced Models Can Use Variable Step Solvers. Previous releases of
Simulink do not allow models to reference models that require variable-step
solvers. This release removes this restriction.

Model Dependency Graphs Accessible from the Tools Menu. This
release adds a Model Reference Dependency Graph item to the Model
Editor’s Tools menu. The item displays a graph of the models referenced
by the model displayed in the Model Editor. You can open any model in
the dependency graph by clicking its node. See “Browsing Model Reference
Dependencies” in the Using Simulink documentation for more information.

Command That Converts Atomic Subsystems to Model

References. This release introduces a MATLAB command

that converts an atomic subsystem to a model reference. See
Simulink.SubSystem.convertToModelReference in the Simulink Reference
documentation for more information.

Model Reference Demos. This release has the following model reference
demo changes:

Version 6.3 (R14SP3) Simulink

® Model reference demo names are now prepended with sldemo_. For
example, the demo mdlref_basic.mdl is now sldemo_mdlref_basic.mdl.

® You can no longer use the mdlrefdemos command from the MATLAB
command prompt to access model reference demos. Instead, you can
navigate to the Simulink demos tab either though the Help browser, or by
typing demos at the command prompt, then navigating to the Simulink
demos category and browsing the demos.

Block Enhancements

Variable Transport Delay, Variable Time Delay Blocks

This release replaces the Variable Transport Delay block of previous releases
with two new blocks. The Variable Transport Delay block of previous releases
implemented a variable time delay behavior, which is now implemented by the
Variable Time Delay block introduced in this release. This release changes the
behavior of the Variable Transport Delay block to model variable transport
delay behavior, e.g., the behavior of a fluid flowing through a pipe.

Additional Reset Trigger for Discrete-Time Integrator Block

This release adds a sampled level trigger option for causing the
Discrete-Time Integrator to reset. The new reset trigger is more efficient than
the level reset option, but may introduces a discontinuity when integration
resumes.

Note In Simulink 6.2 and 6.2.1, the level reset option behaves like the
sampled level option in this release. This release restores the level reset
option to its original behavior.

Input Port Latching Enhancements

This release includes the following enhancements to the signal latching
capabilities of the Inport block.

31

Simulink® Release Notes

32

Label Clarified for Triggered Subsystem Latch Option. The dialog box
for an Inport block contains a check box to latch the signal connected to the
system via the port. This check box applies only to triggered subsystems and
hence is enabled only when the Inport block resides in a triggered subsystem.
In this release, the label for the check box that selects this option has changed
from Latch (buffer) input to Latch input by delaying outside signal.
This change is intended to make it clear what the option does, i.e., cause the
subsystem to see the input signal’s value at the previous time step when

the subsystem executes at the current time step (equivalent to inserting a
Memory block at the input outside the subsystem). The Inport block’s icon
displays <Lo> to indicate that this option is selected.

Latch Option Added for Function-Call Subsystems. This release adds

a check box labeled Latch input by copying inside signal to the Inport
block’s dialog box. This option applies only to function-call subsystems and
hence is enabled only if the Inport block resides in a function-call subsystem.
Selecting this option causes Simulink to copy the signal output by the block
into a buffer before executing the contents of the subsystem and to use this
copy as the block’s output during execution of the subsystem. This ensures
that the subsystem’s inputs, including those generated by the subsystem’s
context, will not change during execution of the subsystem. The Inport block’s
icon displays to indicate that this option is selected.

Improved Function-Call Inputs Warning Label

In previous releases, the dialog box for a function-call subsystem contains

a check box labeled Warn if function-call inputs arise inside called
context. This release changes the label to Warn if function-call inputs
are context-specific. This change is intended to indicate more clearly the
warning’s purpose, i.e., to alert you that some or all of the function-call inputs
come from the function-call subsystem’s context and hence could change while
the function-call subsystem is executing.

Note In this release, you can avoid this function-call inputs problem
by selecting the Latch input by copying inside signal option on the
subsystem’s Inport blocks (see “Latch Option Added for Function-Call
Subsystems” on page 32).

Version 6.3 (R14SP3) Simulink

Modeling Enhancements

Annotations
This release introduces the following enhancements to model annotations:

* Annotation properties dialog box (see “Annotations Properties Dialog Box”
in the Using Simulink documentation)

* Annotation callback functions (see “Annotation Callback Functions” in
the Using Simulink documentation)

® Annotation application programming interface (see “Annotations API” in
the Using Simulink documentation)

Custom Signal Viewers and Generators

This release allows you to add custom signal viewers and generators so

that you can manage them in the Signal & Scope Manager. See “Adding
Custom Viewers and Generators to the Signal & Scope Manager” in the Using
Simulink documentation for further details.

Model Explorer Search Option

This release adds an Evaluate Property Values During Search option to
the Model Explorer. This option applies only for searches by property value.
If enabled, the option causes the Model Explorer to evaluate the value of
each property as a MATLAB expression and compare the result to the search
value. If disabled (the default), the Model Explorer compares the unevaluated
property value to the search value.

Using Signal Objects to Assign Signal Properties

Previous releases allow you to use signal objects to check signal property
values assigned by signal sources. This release allows you, in addition, to
use signal objects to assign values to properties not set by signal sources.
See Simulink.Signal in the Simulink Reference documentation for more
information.

33

Simulink® Release Notes

34

Bus Utility Functions
This release introduces the following bus utility functions:

® Simulink.Bus.save
® Simulink.Bus.createObject

® Simulink.Bus.cellToObject

Fixed-Point Support in Embedded MATLAB

In this release, the Embedded MATLAB Function block supports many
Fixed-Point Toolbox functions. This allows you to generate code from models
that contain fixed-point M functions. See “Using the Fixed-Point Toolbox
with Embedded MATLAB” in the Fixed-Point Toolbox documentation for
more information.

Note You must have a Simulink Fixed Point license to use this capability.

Embedded MATLAB Function Editor

The Embedded MATLAB Editor has a new tool, the Ports and Data Manager.
This tool helps you manage your block inputs, outputs, and parameters.

The Ports and Data Manager uses the same Model Explorer dialogs for
manipulating data, but restricts the view to the block you are working on.
You can still access the Model Explorer via a menu item to get the same
functionality as in previous releases.

Input Trigger and Function-Call Output Support in Embedded
MATLAB

Embedded MATLAB now supports input triggers and function-call outputs.
See “Ports and Data Manager” in the Using Simulink documentation for more
information.

Find Options Added to the Data Object Wizard

This release adds find options to the Data Object Wizard. The options enable
you to restrict the search for model data to specific kinds of objects. See “Data
Object Wizard” in the Using Simulink documentation for more information.

Version 6.3 (R14SP3) Simulink

Simulation Enhancements

Viewing Logged Signal Data

This release can display logged signal data in the MATLAB Times Series
Tools viewer on demand or whenever a simulation ends or you pause a
simulation. See “Viewing Logged Signal Data” in the Using Simulink
documentation for more information.

Importing Time-Series Data

In this release, root-level Inport blocks can import data from time-series

(see Simulink.Timeseries in the Simulink Reference documentation)

and time-series array (see Simulink.TSArray in the Simulink Reference
documentation) objects residing in the MATLAB workspace. See “Importing
Data from the MATLAB Workspace” in the Using Simulink documentation for
more information. From Workspace blocks can also import time-series objects.
The ability to import time-series objects allows you to use data logged from
one simulation as input to another simulation.

Using a Variable-Step Solver with Rate Transition Blocks
Previous releases of Simulink generate an error if you try to use a
variable-step solver to solve a model that contains Rate Transition blocks.
This release allows you to use variable-step as well as fixed-step solvers to
simulate a model. Note that you cannot generate code from a model that
uses a variable-step solver. However, you may find it advantageous, in some
cases, to use a variable-step solver to test aspects of the model not directly
related to code generation. This enhancement allows you to switch back and
forth between the two types of solver without having to remove and reinsert
Rate Transition blocks.

Additional Diagnostics
This releases adds the following simulation diagnostics:

e “Enforce sample times specified by Signal Specification blocks” in the
Using Simulink documentation

e “Extraneous discrete derivative signals” in the Using Simulink
documentation

35

Simulink® Release Notes

36

o “Detect read before write” in the Using Simulink documentation
o “Detect write after read” in the Using Simulink documentation

® “Detect write after write” in the Using Simulink documentation

Data Integrity Diagnostics Pane Renamed, Reorganized

This release changes the name of the Data Integrity diagnostics pane of the
Configuration Parameters dialog box to the Data Validity pane. It also
reorganizes the pane into groups of related diagnostics. See “Data Validity
Diagnostics” in the Using Simulink documentation for more information.

Improved Sample-Time Independence Error Messages

When you enable the Ensure sample time independent solver constraint
(see “Periodic sample time constraint” for more information), Simulink
generates several error messages if the model is not sample-time independent.
In previous releases, these messages were not specific enough for you to
determine why a model failed to be sample-time independent. In this release,
the messages point to the specific block, signal object, or model parameter
that causes the model not to be sample-time independent.

User Interface Enhancements

Model Viewing

This release adds the following model viewing enhancements:

® A command history for pan and zoom commands (see “View Command
History” in the Using Simulink documentation)

e Keyboard shortcuts for panning model views (see “Model Viewing
Shortcuts” in the Using Simulink documentation)

Customizing the Simulink User Interface

This release allows you to use M-code to perform the following customizations
of the standard Simulink user interface:

¢ Add custom commands to the Model Editor’s Tools menu (see “Disabling
and Hiding Dialog Box Controls” in the Using Simulink documentation)

Version 6.3 (R14SP3) Simulink

¢ Disable, or hide widgets on Simulink dialog boxes (see “Disabling and
Hiding Dialog Box Controls” in the Using Simulink documentation)

MEX-Files on Windows

In this release, the extension for files created by the MATLAB mex command
on Windows has changed from d11 to mexw32 or mexw64.

Compatibility Considerations

If you have implemented any S-functions in C, Ada, or Fortran or have models
that reference other models, you should

® Recreate any mexopts.bat files (other than the one in your MATLAB
preferences directory) that you use to build S-functions and model reference
simulation targets

¢ Rebuild your S-functions

Fixed-Point Functions No Longer Supported for Use
in Signal Objects

Compatibility Considerations

Previous releases allowed you to use fixed-point data type functions, such as
sfix, to specify the value of the DataType property of a Simulink.Signal
object. This release allows you to use only builtin data types and
Simulink.NumericType objects to specify the data types of Simulink.Signal
objects. See the Simulink.Signal documentation for more information.

Parameter Object Expressions No Longer Supported
in Dialog Boxes

Compatibility Considerations

Previous releases allow you to specify a Simulink.Parameter object as the
value of a block parameter by entering an expression that returns a parameter
object in the parameter’s value field in the block’s parameter dialog box. In

this release, you must enter the name of a variable that references the object
in the MATLAB or model workspace.

37

Simulink® Release Notes

Version 6.2 (R14SP2) Simulink

This table summarizes what’s new in V6.2 (R14SP2):

New Features and | Version Fixed Bugs and Related
Changes Compatibility Known Problems Documentation at
Considerations Web Site
Yes Details below Yes—Details labeled Bug Reports No
as Compatibility at Web site
Considerations,
below. See also
Summary.

New features, changes, and limitations in this version are

e “Multiple Signals on Single Set of Axes” on page 38

* “Logging Signals to the MATLAB Workspace” on page 38
¢ “Legends that Identify Signal Traces” on page 38

* “Displaying Tic Labels” on page 39

® “Opening Parameters Dialog Box” on page 39

® “Rootlevel Input Ports” on page 39

See the Simulink 6.2 documentation for more information on these
enhancements.

Multiple Signals on Single Set of Axes

Viewers can now display multiple signals on a single set of axes.

Logging Signals to the MATLAB Workspace
Viewers can now log the signals that they display to the MATLAB workspace.

Legends that Identify Signal Traces

Viewers can now display a legend that identifies signal traces.

38

http://www.mathworks.com/support/bugreports/?product=SL&release=R14SP2

Version 6.2 (R14SP2) Simulink

Displaying Tic Labels

Viewers can now display tic labels both inside and outside scope axes.

Opening Parameters Dialog Box

You can open a viewer’s parameters dialog box by right-clicking on the viewer
scope.

Rootlevel Input Ports

Compatibility Considerations
If you save a model with rootlevel input ports in this release and load it in a
previous release, you will get the following warning:

Warning: model, line xxx block_diagram does not have a parameter
named 'SignalName'.

You can safely ignore this warning.

39

Simulink® Release Notes

40

Version 6.1 (R14SP1) Simulink

This table summarizes what’s new in V6.1 (R14SP1):

New Features and | Version Fixed Bugs and Related

Changes Compatibility Known Problems Documentation at
Considerations Web Site

Yes No Fixed Bugs No

Details below

New features and changes introduced in this version are:

¢ “Changed Source Dialog Box Behavior” on page 40

¢ “Changed Model Explorer Source Behavior” on page 41
o “Affected Blocks” on page 41

e “Model Load Warnings” on page 42

In this release, Simulink no longer provides the user with the ability to
change the values of source block parameters through either a dialog box or
the Model Explorer while a simulation is running.

*Changes described in this section reflect Simulink reprogramming
implemented to comply with a court decision regarding patent litigation.

Changed Source Dialog Box Behavior

In this release, opening the dialog box of a source block with tunable
parameters causes a running simulation to pause. While the simulation

is paused, you can edit the parameter values displayed on the dialog box.
However, you must close the dialog box to have the changes take effect and
allow the simulation to continue. Similarly, starting a simulation causes any
open dialog boxes associated with source blocks with tunable parameters

to close.

Version 6.1 (R14SP1) Simulink

Since you can no longer change source block parameters while a simulation
is running, this release removes the Apply button from the dialog boxes of
source blocks.

Note In this release, as in previous releases, if you enable the Inline
parameters option, Simulink does not pause the simulation when you open a
source block’s dialog box because all of the parameter fields are disabled and

can be viewed but cannot be changed.

Changed Model Explorer Source Behavior

In this release, the parameter fields in both the list view and the dialog pane
of the Model Explorer have been disabled and the Apply button has been
removed for source blocks with tunable parameters while a simulation is
running. As a result, you can no longer use the Model Explorer to change

source block parameters while a simulation is running.

Affected Blocks

Blocks affected are all source blocks with tunable parameters, including the
following blocks.

Simulink source blocks, including

Band-Limited White Noise
Chirp Signal

Constant

Pulse Generator

Ramp

Random Number
Repeating Sequence
Signal Generator

Sine Wave

Step

41

Simulink® Release Notes

42

= Uniform Random Number

® User-developed masked subsystem blocks that have one or more tunable
parameters and one or more output ports, but no input ports.

¢ S-Function and M-file (level 2) S-Function blocks that have one or more
tunable parameters and one or more output ports but no input ports.

® Source blocks in other MathWorks products, including:
= CDMA Reference Blockset
= Communications Blockset
= Embedded Target for TI C6000 DSP
= Signal Processing Blockset (formerly DSP Blockset)
= Simulink Fixed Point (formerly Fixed-Point Blockset)
= System Identification Toolbox
= xPC Target
= xPC TargetBox®

See the release notes for each product for a list of that product’s source
blocks affected by the changes in this release.

Model Load Warnings

Compatibility Considerations
If you open a model in Simulink 6.0 that was created or saved with Simulink

6.1, Simulink 6.0 displays warnings that the following parameters are
undefined:

® StrictBusMsg

® MdlSubVersion

Depending on the model, Simulink 6.0 may also display a warning that the
parameter BusObject is not defined. You can safely ignore these warnings.

Version 6.0 (R14) Simulink

Version 6.0 (R14) Simulink

This table summarizes what’s new in V6.0 (R14):

New Features and | Version Fixed Bugs and Related

Changes Compatibility Known Problems Documentation at
Considerations Web Site

Yes Yes—Details labeled Fixed Bugs No

Details below

as Compatibility
Considerations,
below. See also
Summary.

New features and changes introduced in this version are organized by these
topics:

“Model Explorer” on page 44

“Configuration Sets” on page 44

“Model Referencing” on page 44

“Model Workspaces” on page 45

“Implicit Fixed-Step Solver” on page 46

“The Signal and Scope Manager” on page 46
“Data Object Type Enhancements” on page 46
“Block Enhancements” on page 47

“Signal Enhancements” on page 50

“Rate Transition Enhancements” on page 51
“Execution Context Enhancements” on page 52
“Algebraic Loop Minimization” on page 52
“Level-2 M-File S-Functions” on page 52
“Panning Model Diagrams” on page 53
“MATLAB Data Type Conversions” on page 53

43

Simulink® Release Notes

44

® “Signal Object Resolution Changes” on page 53

* “Loading Models Containing Non-ASCII Characters” on page 54

¢ “Change in Sample Time Behavior of Unary Minus Block” on page 55
e “Initial Output of Conditionally Executed Subsystems” on page 55

¢ “Execution Context Default Changes” on page 55

Model Explorer

The Model Explorer is a new tool that lets you quickly navigate, view, create,
configure, search, and modify all data and properties of a Simulink model or
Stateflow chart. See “The Model Explorer” in the online Simulink help for
more information.

Configuration Sets

This release introduces configuration sets. A configuration set is a named set
of values for simulation parameters, such as solver type and simulation start
or stop time. Every new model is created with a configuration set that is
initialized from a global default configuration set. You can create additional
configuration sets for a given model and designate any of them as the active
set with the click of a mouse button. See “Configuration Sets” in the online
Simulink documentation for more information.

Configuration Parameters Dialog Box

This release replaces the Simulation Parameters dialog box with the
Configuration Parameters dialog box. The Configuration Parameters
dialog box allows you to set a model’s active configuration parameters. You
can also use the Model Explorer to set the active configuration parameters
as well as inactive parameters. See “Configuration Parameters Dialog Box”
for more information.

Model Referencing

This release introduces model referencing, a feature that lets a model include
other models as modular components. You include other models in a model
by using Model blocks to reference the included models. Like subsystems,
model referencing allows you to organize large models hierarchically, with
Model blocks representing major subsystems. However, model referencing

Version 6.0 (R14) Simulink

has significant advantages over subsystems in many applications. The
advantages include:

® Modular development

You can develop the referenced model independently from the models in
which it is used.

¢ Inclusion by reference

You can reference a model multiple times in another model without having
to make redundant copies. Multiple models can also reference the same
model.

® Incremental loading

The referenced model is not loaded until it is needed, speeding up model
loading.

¢ Incremental code generation

Simulink and the Real-Time Workshop create binaries to be used in
simulations and standalone applications to compute the outputs of the
included blocks. Code generation occurs only for models that have changed.

See “Referencing Models” in the online Simulink documentation for more
information. For a demonstration of a way to automate conversion of an
existing model’s subsystems to model references, execute mdlref conversion
at the MATLAB Command Line. For a summary of limitations on the use of
model referencing in this release, see “Model Referencing Limitations”.

Model Workspaces

In this release, Simulink provides each model with its own workspace for
storing data. Models can access data in their own workspaces as well as data
in models that reference them and in the base (i.e., MATLAB) workspace.
Model workspaces allow you to create data for one model without fear of
inadvertently altering another model’s data. See “Working with Model
Workspaces” for more information.

45

Simulink® Release Notes

46

Implicit Fixed-Step Solver

This release includes a new fixed-step solver named ode14x. This is an
implicit, extrapolating fixed-step solver whose extrapolation order and
number of Newton’s method iterations can be specified via Simulink
configuration parameters. The odel4x solver is faster than Simulink’s explicit
fixed-step solvers for certain types of stiff systems that require a very small
step size to avoid unstable solutions.

The Signal and Scope Manager

The Signal and Scope Manager is a new Simulink feature that enables you
to globally manage signal generators and viewers. See “The Signal & Scope
Manager” in the online Simulink help for more information.

Data Object Type Enhancements

This release introduces the following types of objects for specifying the
properties of model signals and parameters (i.e., model data):

Object Class Purpose

Simulink.AliasType Specify another name for a data
type.

Simulink.NumericType Define a custom data type.

Simulink.StructType Define a data structure, i.e., a type

of signal or parameter comprising
data of different types.

Simulink.Bus Define a signal bus.

See “Working with Data Types” and “Data Object Classes” in the Simulink
online documentation for more information.

This release also adds the following properties to Simulink.Signal class:

® Dimensions
® SampleTime

e SamplingMode

Version 6.0 (R14) Simulink

® DataType
® Complexity

Simulink checks the consistency of these properties against the values set on
the ports/dwork elements associated with each signal object.

Note If an attribute is set as auto/ -1 (not specified), then no consistency
checking is done.

Block Enhancements
This release includes the following block-related enhancements.

New Blocks

This release introduces the following blocks.

¢ The Signal Conversion block enables you to convert virtual buses to
nonvirtual buses, and vice versa.

¢ The Environment Controller block’s output depends on whether the model
is being used for simulation or code generation.

¢ The Bias block adds a specified bias value to its input and outputs the
result.

¢ Embedded MATLAB Function block enables you to include MATLAB code
in models from which you intend to generate code, using the Real-Time
Workshop.

¢ The Model block allows you to include other models in a model (see “Model
Referencing” on page 44).

Fixed-Point-Capable Blocks

This release adds fixed-point data capability to many existing Simulink blocks
and includes fixed-point blocks previously available only with the Fixed-Point
Blockset. To use the fixed-point data capability of these blocks, you must
install the Simulink Fixed-Point product on your system. See “Fixed-Point
Data” in the online Simulink documentation for more information.

47

Simulink® Release Notes

48

Port Values Display

This release of Simulink can display block outputs as data tips on a block
diagram while a simulation is running. This allows you to observe block
outputs without having to insert Scope or Display blocks. See “Displaying
Block Outputs” in the online Simulink documentation for more information.

User-Specifiable Sample Times

This release expands the number of blocks with user-specifiable sample times
to include most builtin Simulink blocks. In previous releases, most builtin
blocks inherited their sample times directly or indirectly from the blocks to
which they were connected. In this release, most blocks continue to inherit
their sample times by default. However, you can override this default setting
in most cases to specify a nondefault sample time, using either the block’s
parameter dialog box or a set_param command. This avoids the need to use
Signal Specification blocks to introduce nondefault sample times at specific
points in a model.

Improved Initial Output Handling

In previous Simulink releases, the Constant, Initial Condition, Unit Delay,
and other blocks write out their initial output values in their md1Start
method. This behavior can cause unexpected block output initialization. For
example, if a Constant block in an enabled subsystems feeds an Outport block
whose IC is set to [], the Constant value appears even when the enabled
subsystem is not enabled.

It is desirable in some cases for a block to write its initial output value
in its md1Start method. For example, discrete integrator block may need
to read the value from its external IC port to setting the initial state in
mdlInitialize method.

This release addresses these problems by implementing a hand-shaking
mechanism for handling block initial output. Under this mechanism, a block
only computes its initial output value when it is requested by its downstream
block. For example, if a Constant block feeds the external IC port of a Discrete
Integrator block, the discrete integrator block’s external IC port requests the
Constant block to compute its initial output value in its md1Start method.

Version 6.0 (R14) Simulink

Bus-Capable Nonvirtual Blocks

In previous releases, Simulink propagated buses only through virtual blocks,
such as subsystems. In this release, Simulink also propagates buses through
the following nonvirtual blocks:

* Memory

* Merge

* Switch

e Multiport Switch
® Rate Transition

¢ Unit Delay

® Zero-Order Hold

Some of these blocks impose constraints on bus propagation through them.
See the documentation for the individual blocks for more information.

Duplicate Input Ports

This release allows you to create duplicates of Inport blocks in a model. A
model can contain any number of duplicates of an original Inport block. The
duplicates are graphical representations of the original intended to simplify
block diagrams by eliminating unnecessary lines. The duplicate has the same
port number, properties, and output as the original. Changing a duplicate’s
properties changes the original’s properties and vice versa. See the Inport
block documentation for more information.

Inport/Outport Block Display Options

Inport and Outport blocks can now optionally display their port number,
signal name, or both the number and the name. See the online documentation
for the Inport and Outport blocks for more information.

Zero- and One-Based Indexing

In this release, some blocks that use indices provide the option for indices to
start at 0 or 1. The default is one-based indexing to maintain compatibility

49

Simulink® Release Notes

50

with previous releases. Blocks that now support zero- or one-based indexing
include

® Selector
® For Iterator

® Assignment

Runtime Block API

This release introduces an application programming interface (API) that
enables programmatic access to block data, such as block inputs and outputs,
parameters, states, and work vectors, while a simulation is running. You can
use this interface to develop MATLAB programs capable of accessing block
data while a simulation is running or to access the data from the MATLAB
command line. See “Accessing Block Data During Simulation” for more
information.

Command-Line API to Signal Builder Block

This release provides a command, signalbuilder, for creating and accessing
Signal Builder blocks in a model.

Signal Enhancements
This release includes the following signal-related enhancements.

Test Point Indicators

This release can optionally use indicators on a block diagram to indicate
signals that are test points. See “Displaying Test Point Indicators” in the
online documentation for more information.

Signal Logging
This release allows you to log signal data to the workspace during simulation
(see “Logging Signals” for more information).

Version 6.0 (R14) Simulink

Internal Signal Structures Revamped

This release revamps the sigmap, siglists and sigregions structures to
support signal logging and other signal-related enhancements.

Compatibility Considerations. S-functions created prior to Version 6 (R14).
that access the sigmap, siglists and sigregions structures might generate
segmentation violations. To avoid this, recompile the S-functions in Version 6
(R14) or subsequent releases.

Edit-Time Signal Label Propagation

In this release, when you change a signal label, Simulink automatically
propagates the change to all downstream instances of the label. You do not
have to update the diagram as in previous releases.

Bus Editor

The new Bus Editor enables you to create and modify bus objects in Simulink’s
base (MATLAB) workspace. See "Bus Editor" for more information.

Rate Transition Enhancements

This release provides the following enhancements to the handling of rate
transitions in models.

Rate Transition Block Determines Transition Type Automatically

The Rate Transition block now determines the type of transition that occurs
between the source and destination block (i.e., fast-to-slow or slow-to-fast).
Therefore, this release eliminates the transition type option on the block’s
parameter dialog.

Avutomatic Insertion of Rate Transition Blocks

This release introduces an option to insert hidden rate transition blocks
automatically between blocks that operate at different rates. This saves
you from having to insert rate transition blocks manually in order to avoid
illegal rate transitions. The inserted blocks are configured to ensure that
data is transferred deterministically and that data integrity is maintained
during the transfer. See “Fixed-Step Solver Options” in the online Simulink
documentation for more information.

51

Simulink® Release Notes

52

User-Specifiable Output Sample Time

The Rate Transition Block’s parameter dialog box contains a new parameter:
Output Port Sample Time. This parameter allows you to specify the output
rate to which the input rate is converted. If you do not specify a rate, the
Rate Transition block inherits its output rate from the block to which its
output is connected.

Execution Context Enhancements

This releases introduces the following enhancements to execution context
propagation.

Enabling Execution Context Propagation

This release allows you to specify whether to permit execution contexts to be
propagated across a conditionally executed subsystem’s boundary. See the
documentation for the Subsystem block for more information.

Execution Context Indicator

This release optionally displays a bar across each input port and output port

of a subsystem that does not permit propagation of the subsystem’s execution
context. To enable this option, select Block Displays->Execution context

indicator from the model editor’s Format menu.

Algebraic Loop Minimization

This release can eliminate some types of algebraic loops involving atomic or
enabled subsystems or referenced models. See “Eliminating Algebraic Loops”
in the online Simulink documentation for more information.

Level-2 M-File S-Functions

This release introduces a new application programming interface (API) for
creating custom Simulink blocks based on M code. In contrast to the previous
API, designated Level 1, which supported a restricted set of block features,
the new API, designated Level 2, supports most standard Simulink block
features, including support for matrix signals and nondouble data types. See
“Writing Level-2 M-File S-Functions” in the online documentation for more
information.

Version 6.0 (R14) Simulink

Panning Model Diagrams

You can now use the mouse to pan around model diagrams that are too large
to fit in the model editor’s window. To do this, position the mouse over the
diagram and hold down the left mouse button and the P or Q key on the
keyboard. Moving the mouse now pans the model diagram in the editor
window.

MATLAB Data Type Conversions

Release 14 introduces changes in the way MATLAB handles conversions from
double to standard MATLAB nondouble data types (e.g., int8, uint8, etc.) and
from one nondouble data type to another.

Compatibility Considerations

Previous releases of MATLAB use truncation to convert a floating point value
to an integer value, e.g., int8(1.7) = 1. Release 14 uses rounding, e.g.,
int8(1.7) = 2. See “New Nondouble Mathematics Features" in the Release
14 MATLAB Release Notes for a complete description of the changes in data
type conversion algorithms introduced in Release 14.

Such changes could affect the behavior of models that rely on nondouble
data type conversions of signals and block parameters. For example, a Gain
parameter entered as int8(3.7) ends up as 4 in this release as opposed to 3
in previous releases and this difference could change the simulation results.
Therefore, if the simulation results for your model differ in Release 14 from
previous releases, you should investigate whether the differences result from
the changes in data type conversion algorithms, and, if so, modify your model
accordingly.

Signal Object Resolution Changes

In previous releases, Simulink attempted to resolve every named signal to a
Simulink.Signal object of the same name in the MATLAB workspace.

Compatibility Considerations

In this release, Simulink lets you specify whether a named signal or discrete
state should resolve to a signal object, using the Signal Properties dialog
box and the State Properties of blocks that have discrete states, such as the

53

Simulink® Release Notes

54

Discrete-Time Integrator. By default, Simulink attempts to resolve every
named signal or state to a signal object regardless of whether the model
specifies that the signal or state should resolve to a signal object. If the model
does not specify resolution for a signal or state and it does resolve, Simulink
displays a warning. You can also specify that Simulink attempt to resolve all
named signals or states without warning of implicit resolutions (the behavior
in previous releases) or that it only resolve signals and states that the model
specifies should resolve (explicit resolution).

Explicit signal resolution is the recommended approach for doing signal
resolution as it ensures that signals that should be resolved are resolved and
signals that should not resolve are not resolved. This release includes a script
that facilitates converting models that use implicit signal resolution to use
explicit resolution. Enter help disableimplicitsignalresolution at the
MATLAB command line for more information.

Loading Models Containing Non-ASCIl Characters

Release 14 of MATLAB introduces Unicode support. This enhancement allows
MATLAB and Simulink to support character sets from different encoding
systems.

Compatibility Considerations

his change causes Simulink to behave differently from previous releases when
loading a model containing non-ASCII characters. Previous releases load
such models regardless of whether the non-ASCII characters are compatible
with the current encoding system used by MATLAB. In Release 14, Simulink
checks the characters in the model against the current encoding setting of
MATLAB. If they are incompatible, Simulink does not load the model. Instead,
it displays an error message that prompts you to change to a compatible
MATLAB encoding setting, using the s1CharacterEncoding command.

Version 6.0 (R14) Simulink

Change in Sample Time Behavior of Unary Minus
Block

Release 14 changes the sample time behavior of the Unary Minus block.

Compatibility Considerations

In Release 13, if the sample time of this block’s input is continuous, the sample
time of the block and its output is fixed in minor time step. This block is fixed
in minor step and the output signal is fixed in minor step when the input is a
continuos sample time signal. In Release 14, if the input is continuous, the
block and output sample time are continuous also.

Initial Output of Conditionally Executed Subsystems

In this release, the initial output is undefined if the Initial output port
specifies [].

Compatibility Considerations

In previous releases, if the Initial output parameter of an Outport block in a
conditionally executed subsystem specified [] as the initial output, the initial
output of this port was the initial output of the block driving the Outport block.

Execution Context Default Changes

In R14, execution context propagation does not cross a conditionally executed
subsystem boundaries by default.

Compatibility Considerations

In R13 SP1 and DACORE2, execution contexts propagate across conditionally
executed subsystem boundaries by default. You need to choose the Propagate
execution context across subsystem boundary option in the subsystem’s
parameter dialog box.

55

Simulink® Release Notes

Version 5.1 (R13SP1) Simulink

This table summarizes what’s new in V5.1 (R13SP1):

New Features and | Version Fixed Bugs and Related

Changes Compatibility Known Problems Documentation at
Considerations Web Site

Yes No Fixed Bugs Printable Release

Details below

Notes: PDF

V5.1 product
documentation

56

New features and changes introduced in this version are:

¢ “Sample Time Parameters Exposed” on page 56

¢ “Enhanced Debugger” on page 57

* “Context-Sensitive Data Typing of Tunable Parameters” on page 59
® “Conditional Execution Behavior” on page 61

¢ “Function-Call Subsystem Enhancements” on page 64

¢ “External Increment Option Added To For Iterator Block” on page 64

¢ “Performance Improvements” on page 65

Sample Time Parameters Exposed

Sample time parameters of most Simulink built-in library blocks have been
exposed to the user. That is, the sample time parameter of these blocks has
been made accessible via the block’s dialog box or set _param. This means that
most nonvirtual blocks in the Simulink library have a user settable sample
time parameter. Prior to this exposure, these blocks had an internal inherited
sample time with the exception of the Constant block, which had a constant
(inf) sample time. By providing access to the sample time parameter, you no
longer need to use the Signal Specification block to apply a nondefault sample
times to these blocks.

http://www.mathworks.com/access/helpdesk_r13/help/pdf_doc/simulink/rn.pdf
http://www.mathworks.com/access/helpdesk_r13/help/toolbox/simulink/simulink.html

Version 5.1 (R13SP1) Simulink

Enhanced Debugger

This release includes enhancements to the Simulink debugger that enable
you to step through a simulation showing information not visible in previous
releases. The enhancements include

® An expanded command set that now enables you to step a simulation
method by method. Previous releases showed only output methods.

® An expanded toolbar that gives you push button access to new debugger
commands

® A Simulation Loop pane that shows the current state of the simulation
at a glance

Note Methods are functions that Simulink uses to solve a model at each
time step during the simulation. Blocks are made up of multiple methods.
"Block execution" in this documentation is shorthand notation for "block
methods execution." Block diagram execution is a multi-step operation
that requires execution of the different block methods in all the blocks in
a diagram at various points during the process of solving a model at each
time step during simulation, as specified by the simulation loop.

These changes allow you to pinpoint problems in your model with greater
accuracy. The following sections briefly describe the debugger enhancements.
See the Simulink documentation for a detailed description of the new features
and their usage.

Enhanced Debugger Commands
This release enhances the following debugger commands:

® step

In previous releases, this command advanced the simulation from the
current block Outputs method over any intervening methods to the next
block Outputs method. In this release, step advances the simulation
method by method, or into, over, or out of methods, from the first method
executed during the simulation to the last. This allows you to determine
the result of executing any model, subsystem, or block method executed

57

Simulink® Release Notes

58

during the simulation, including block Outputs, Update, and Derivative
methods as well as solver methods.

next

In previous releases, this command advanced the simulation to the first
block Outputs method executed during the next time step. In this release,
it advances the simulation over the next method to be executed, executing
any methods invoked by the next method.

break

In previous releases, this command set a breakpoint at the Outputs method
of a specified block. In the current release, it sets a breakpoint at any
specified method or on all the methods of a specified block.

bafter

In previous releases, this command set a breakpoint after the Outputs
method of a specified block. In this release, it sets a breakpoint after a
specified method or after each of the methods of a specified block.

minor

In previous releases, this command enabled or disabled stepping across
Outputs methods in minor time steps. In the current release, it enables or
disables in minor time steps breakpoints set by block for all methods.

New Debugger Commands
This release introduces the following debugger commands:

® elist

Displays the method execution lists for the root system and the nonvirtual
subsystems of the model being debugged.

etrace

Causes the debugger to display a message in the MATLAB Command
Window every time a method is entered or exited while the simulation
is running.

where

Displays the call stack of the method at which the simulation is currently
suspended.

Version 5.1 (R13SP1) Simulink

Enhanced Debugger Toolbar

The debugger toolbar has been expanded to include buttons for the following
versions of the step command: step into, step over, step out, and step
top.

Simulation Loop Pane

This release adds a Simulation Loop pane to the debugger GUI that
displays by method the point in the simulation loop at which the simulation is
currently suspended. The debugger updates the pane after each step, next,
or continue command, enabling you to determine at a glance the point to
which the command advanced the simulation. The pane also allows you to
set breakpoints on simulation loop methods and to navigate to the block at
whose method the simulation is currently suspended.

Sorted List Pane

This release renames the Block Execution List pane of the debugger GUI to
the Sorted List pane to reflect more accurately what the pane contains. The
Sorted List pane displays for the root system and each nonvirtual subsystem
of the model being debugged a sorted list of the subsystem’s blocks. The sorted
lists enable you to determine the block IDs of a model’s blocks.

Context-Sensitive Data Typing of Tunable Parameters

In this release, if a model’s Inline parameters setting is selected, Simulink
regards the data type of a tunable parameter as context-sensitive if the data
type is not specified. In particular, this release allows the block that uses the
parameter to determine the parameter’s data type. By contrast, Release 13

regards the type of the parameter to be double regardless of where it is used.

Change in Simulink Behavior

This change affects the behavior of Simulink in two cases. First, in Release
13, if a tunable parameter’s data type is unspecified and a block that uses it
needs to convert its type from double to another type, Simulink by default
stops and displays an error message when you update or simulate the model.
The error alerts the user to the fact that the type conversion is a downcast
and hence could result in a loss of precision. In this release, by contrast, a
typecast never occurs because the block itself determines the appropriate

59

Simulink® Release Notes

60

type for the parameter. Hence, in this release, Simulink never generates a
downcast error for tunable parameters of unspecified data type.

The following model illustrates the difference in behavior between this release
and Release 13 in this case.

int16i1% 4’{'“”5 : :b—h-m”E' I:l

- . Dizplay
Constant Gain

Assume that the model’s Inline parameters setting is selected (thereby
making parameters nontunable by default) and the model declares k as a
tunable parameter on the Model Configuration Parameters dialog box.
Also assume that the user has specified the value of k on the MATLAB
command line as follows:

> k = 5.7

In other words, the user has specified a value for k but not a data type. In this
case, this release regards the type of k to be int16, the type required by the
Gain block to compute its output. By contrast, Release 13 regards the type of
k to be double and hence assumes that the Gain block must downcast k to
compute its output. Release 13 therefore stops and displays an error message
by default in this case when you update or simulate the model.

The behavior of this release also differs from Release 13 in the case where a
model uses a tunable parameter of unspecified data type in more than one
place in the model and the required data type differs in different places. This
case creates a conflict under the assumption that the block in which the
parameter is used determines the parameter’s data type. This assumption
requires Simulink to assign different data types to the same parameter, which
is impossible. Therefore, in this release, Simulink signals an error to alert the
user to the conflict. By contrast, in Release 13, Simulink does not throw an
error because the data type of the parameter is double regardless of where it
is used. You can avoid the conflicting data types error in Release 13SP1 by
specifying the tunable parameter’s data type.

Version 5.1 (R13SP1) Simulink

The following model illustrates this change in behavior.

int1ai1) 4’{'“”5 : ::—.I-IHHE I:l
]

iy Gl

N3 4{'"'& : oL L= [o]
C2

c2 G2

The two Gain blocks in this model both use k, a tunable parameter of
unspecified type, as their gain parameter. Computing the outputs of the blocks
requires that the gain parameter be of types int16 and int32, respectively. In
Release 13, Simulink regards the data type of k to be double and the Gain
blocks use typecasts to convert k to the required type in each case. Simulink
simulates the model without error (if the parameter downcasting diagnostic
is set to none or warning). By contrast, this release signals an error because
this model requires k to be both type int16 and int32, an impossibility. You
can avoid this error by explicitly specifying k’s data type; for example:

k = int16(6);

Conditional Execution Behavior

This release augments the conditional input branch behavior of the previous
release with a more generalized behavior called conditional execution (CE)
behavior. The new behavior speeds simulation of models by eliminating
unnecessary execution of blocks connected to Switch, Multiport Switch, and
conditionally executed blocks.

61

Simulink® Release Notes

62

Note The Simulink documentation has not yet been updated to reflect the
new behavior. Consequently, the remainder of this release note provides a
detailed explanation of how the behavior works.

As with the conditional input branch behavior available in the previous
release, the new behavior ensures that the block methods that make up an
input branch of a Switch or Multiport Switch block execute only when the
model selects the corresponding switch input. In addition, the new behavior
option generalizes this behavior to conditionally executed subsystems.
Consider, for example, the following model.

+H +H+
+H +HH +H
Fulss »
Genertor "
i =
In
1 = Im o S-:ope'.
L
Constant Enablod Gain -.'.
Subsystem »

Simulink computes the outputs of the Constant block and Gain Block only
when the Enabled Subsystem executes (i.e., at time steps 0, 4, 8, and so on).
This is because the output of the Constant block is required and the input of
the Gain block changes only when the Enabled Subsystem executes. When
CE behavior is off, Simulink computes the outputs of the Constant and Gain
blocks at every time step, regardless of whether the outputs are needed or
change.

In this example, Simulink regards the Enabled Subsystem as defining an
execution context for the Constant and Gain blocks. Although the blocks
reside in the model’s root system, their block methods are executed as if the
blocks reside in the Enabled Subsystem.

In general, Simulink defines an execution context as a set of blocks to
be executed as a unit. At model compilation time, Simulink associates
an execution context with the model’s root system and with each of its

Version 5.1 (R13SP1) Simulink

nonvirtual subsystems. Initially, the execution context of the root system and
each nonvirtual subsystem is simply the blocks that it contains. Simulink
examines whether a block’s output is required only by a conditionally
executed subsystem or whether the block’s input changes only as a result of
the execution of a conditionally executed subsystem. If so, Simulink moves
the block into the execution context of the conditionally executed system. This
ensures that the block methods are executed during the simulation loop only
when the corresponding conditionally executed subsystem executes.

Note This behavior treats the input branches of a Switch or Multiport Switch
block as invisible, conditionally executed subsystems, each of which has its
own execution context that is enabled only when the switch’s control input
selects the corresponding data input. As a result, switch branches execute
only when selected by switch control inputs.

To determine the execution context to which a block belongs, select Sorted
order from the model window’s Format menu. Simulink displays the sorted
order index for each block in the model in the upper right corner of its icon.
The index has the format s:b, where s specifies the subsystem to whose
execution context the block, b, belongs.

Simulink also expands the sorted order index of conditionally executed
subsystems to include the system ID of the subsystem itself in curly brackets
as illustrated in the following figure.

+

Vo

+H +H+ +H

Fulss

Genemator ?:

T

o nowel

1 —=]im Ot Scope
Constant Enablad Gain

Subsystam

In this example, the sorted order index of the enabled subsystem is 0:1{1}.
The 0 indicates that the enable subsystem resides in the model’s root system.

63

Simulink® Release Notes

64

The first 1 indicates that the enabled subsystem is the second block on

the root system’s sorted list (zero-based indexing). The 1 in curly brackets
indicates that the system index of the enabled subsystem itselfis 1. Thus any
block whose system index is 1 belongs to the execution context of the enabled
subsystem and hence executes when it does. For example, the constant block’s
index, 1:0, indicates that it is the first block on the sorted list of the enabled
subsystem, even though it resides in the root system.

Function-Call Subsystem Enhancements

This releases adds the following function-call subsystem-related parameters
to the Trigger block:

¢ The States when enabling parameter specifies whether a function-call
enable trigger causes Simulink to reset the states of the subsystem
containing this Trigger block to their initial values.

¢ The Sample time type parameter specifies whether the function-call
subsystem containing the Trigger block is invoked periodically.

® The Sample time parameter species the rate at which the function-call
subsystem containing the Trigger block is invoked.

See the Trigger block documentation for additional information.

External Increment Option Added To For Iterator
Block

This release adds an external increment option to the For Iterator block.
Selecting this option causes the block to display an input port for the external
increment. The value of this input port at the current time step is used as
the value of the block’s iteration variable at the next iteration. You can select
this option by checking the Set next i (iteration variable) externally option
on the block’s parameter dialog box or by setting its ExternalIncrement
parameter to 'on'. See the documentation for the For Iterator block for more
information.

Version 5.1 (R13SP1) Simulink

Note This enhancement is not backward compatible with R13. Loading
models containing For Iterator blocks with this option selected in R13
produces a warning message. Simulating such models in R13 can produce
incorrect results.

Performance Improvements

Release R13SP1 includes many performance improvements that were
designed to particularly benefit large models (containing on the order of
100,000 blocks and/or more than a few megabytes of parameter data). Speed
has been improved and memory consumption reduced for model loading,
compilation, code generation, and closing. The various improvements span
the Simulink, Stateflow, and Real-Time Workshop products and include:

¢ Increased speed and decreased memory consumption through improved
incremental loading of library blocks that contain Stateflow blocks.

¢ Increased speed and decreased memory usage through the introduction of a
redesigned Signal Specification block. Models saved with the old version
of the Signal Specification block should automatically start using the new
block when you load the model with this release.

® Increased speed in datatype and sample time propagation during the
compile phase of certain models.

® Increased speed in the Stateflow build process for both simulation and
Real-Time Workshop targets.

¢ Increased speed and decreased memory consumption when using N-D
Lookup Table blocks that utilize large parameter data.

® Increased speed and decreased memory usage when generating code
with Real-Time Workshop or the Simulink Accelerator for models with
large parameter sets. This improvement involves writing out parameter
references instead of the entire parameter data into the RTW file for
parameters whose size exceeds 10 elements. The parameter values for such
references are retrieved directly from Simulink during the code generation
process.

® Decreased memory usage during various phases of code generation process
in Real-Time Workshop or the Simulink Accelerator.

65

Simulink® Release Notes

66

® Improved speed during model close through streamlining of the close
process.

Other minor improvements have also been made to improve performance.
Your models should experience corresponding speed and memory
improvements, to the extent that these changes apply to your specific models

and usage scenarios.

Version 5.0.1 (R13.0.1) Simulink

Version 5.0.1 (R13.0.1) Simulink

This table summarizes what’s new in V5.0.1 (R13.0.1):

New Features and | Version Fixed Bugs and Related

Changes Compatibility Known Problems Documentation at
Considerations Web Site

Yes Yes—Details labeled Fixed Bugs No

Details below

as Compatibility
Considerations,
below. See also
Summary.

New features and changes introduced in this version are

Tunable Parameters for Unified Fixed-Point Blocks

Compatibility Considerations
Unified fixed-point blocks with tunable parameters have compatibility
problems under certain conditions in Release 13. The problem arises only if
a tunable parameter is mapped to a built-in integer or single data type.
When tunable parameters are mapped to built-in integers or single, the
code generated by Real Time Workshop will be different for unified blocks
than it was for Fixed-Point Blockset blocks in prior releases. There are no
compatibility problems if a tunable parameter maps to a nonbuilt-in data
type, such as a scaled fixed-point integer.

Tunable parameters are entered in a Simulink model by specifying the name
of a MATLAB variable in a block’s dialog. This variable can be either a plain
MATLAB variable or a Simulink parameter object. In either case, a numerical
value will be defined for this tunable parameter by doing an assignment in
MATLAB. MATLAB supports several numerical data types including the
eight Simulink built-in numerical data types: double, single, int8, uint8,
int16, uint16, int32, and uint32. One of these eight data types can be used
when a value is defined for a MATLAB variable. The effect of the data type of
the MATLAB variable is significantly different depending on how the tunable
parameter is used in Simulink.

67

Simulink® Release Notes

68

For Simulink built-in blocks, the legacy rule is to fully respect the data
type used for the value of a MATLAB variable. Whatever data type is used
in MATLAB when assigning a value to a variable is also be used when
declaring that parameter in code generated by Real Time Workshop. The
use of that parameter by a block may require the value to be represented
using a different data type. If so, additional code is generated to convert the
parameter every time it is used by the block. To get the most efficient code
for a given block, the value of the MATLAB variable should use the same
data type as is needed by the block.

For Fixed-Point Blockset blocks, the legacy rule is to expect no data type
information from the MATLAB variable used for the tunable parameter. A
fundamental reason for this is that MATLAB does not have native support for
fixed-point data types and scaling, so the Simulink built-in legacy rule could
not be directly extended to the general fixed-point case. Many fixed-point
blocks automatically determine the data type and scaling for parameters
based on what leads to the most efficient implementation of a given block.
However, certain blocks such as Constant, as well as blocks that use tunable
parameters in multiplication, do not imply a unique best choice for the data
type and scaling of the parameter. These blocks have provided separate
parameters on their dialogs for entering this information.

In Release 13, many Simulink built-in blocks and Fixed-Point Blockset
blocks were unified. The Saturation block is an example of a unified block.
The Saturation block appears in both the Simulink Library and in the
Fixed-Point Blockset Library, but regardless of where it appears it has
identical behavior. This identical unified behavior includes the treatment

of tunable parameters. The dissimilarity of the legacy rules for tunable
parameters has lead to a shortcoming in the unified blocks. Unified blocks
obey the Simulink legacy rule sometimes and the Fixed-Point Blockset legacy
rule at other times. If the block is using the parameter with built-in Simulink
data types, then the Simulink legacy rule applies. If the block is using the
parameter with nonbuilt-in data types, such as scaled fixed-point data types,
then the Fixed-Point Blockset legacy rule applies. This gives full backwards
compatibility with one important exception.

The backwards compatibility issue arises when a model created prior to
R13 uses a Fixed-Point Blockset block with a tunable parameter, and the
data type used by the block happens to be a built-in data type. If the block
is unified, it will now handle the parameter using the Simulink legacy rule

Version 5.0.1 (R13.0.1) Simulink

rather than the Fixed-Point Blockset legacy rule. This can have a significant
impact. For example, suppose the tunable parameter is used in a Saturation
block and the data type of the input signal is a built-in int16. In prior
releases, the Fixed-Point Blockset block would have declared the parameter
as an int16. For legacy fixed-point models, the MATLAB variables used for
tunable parameters invariably gave their value using floating-point double.
The unified Saturation block would now declare the tunable parameter in the
generated code as double. This has several negatives. The variable takes up
six more bytes of memory as a double than as an int16. The code for the
Saturation block now includes conversions from double to int16 that execute
every time the block executes. This increases code size and slows down
execution. If the design was intended for use on a fixed-point processor, the
use of floating-point variables and floating-point conversion code is likely to
be unacceptable. It should be noted that the numerical behavior of the blocks
is not changed even though the generated code is different.

For an individual block, the backwards compatibility issue is easily solved.
The solution involves understanding that the Simulink legacy rule is

being applied. The Simulink legacy rule preserves the data type used

when assigning the value to the MATLAB variable. The problem is that

an undesired data type will be used in the generated code. To solve this,

you should change the way you assign the value of the tunable parameter.
Determine what data type is desired in the generated code, then use an
explicit type cast when assigning the value in MATLAB. For example, if int16
is desired in the generated code and the initial value is 3, then assign the
value in MATLAB as int16(3). The generated code will now be as desired.

A preliminary step to solving this issue with tunable parameters is identifying
which blocks are affected. In most cases, the treatment of the parameter will
involve a downcast from double to a smaller data type. On the Diagnostics
tab of the Simulation Parameters dialog is a line item called Parameter
downcast. Setting this item to Warning or None will help identify the blocks
whose tunable parameters require reassignment of their variables.

In R13, the solution described above did not work for three unified blocks:
Switch, Look-Up Table, and Lookup Table (2-D). These blocks caused errors
when the value of a tunable parameter was specified using integer data types.
This was a false error and has been removed. Using an explicit type cast when
assigning a value to the MATLAB variable now solves the issue of generating
code with the desired data types.

69

Simulink® Release Notes

70

Version 5.0 (R13) Simulink

This table summarizes what’s new in V5.0 (R13):

New Features and | Version Fixed Bugs and Related

Changes Compatibility Known Problems Documentation at
Considerations Web Site

Yes Yes—Details labeled Fixed Bugs No

Details below

as Compatibility
Considerations,
below. See also
Summary.

New features and changes introduced in this version are organized by these
topics:

¢ “Block Enhancements” on page 70

® “Simulation Enhancements” on page 75

¢ “Modeling Enhancements” on page 76

¢ “Platform Limitations for HP and IBM” on page 79

Note Simulink 5.0 incorporates changes introduced in Simulink 4.1.1, which
was initially released in Web-downloadable form after Release 12.1 was
released, but before Release 13. These Release Notes describe those changes,
as well as other changes introduced after Version 4.1.1.

Block Enhancements
Simulink 5.0 includes the following block-related enhancements:

¢ “Fixed-Point Block Library” on page 71

® “Lookup Table Editor” on page 72

e “Model Verification Block Library” on page 72
® “Signal Builder Block” on page 72

Version 5.0 (R13) Simulink

® “DocBlock” on page 73

e “Rate Transition Block” on page 73

® “Block Library Reorganization” on page 73

® “Model Linearization Blocks” on page 73

e “Data Store Read/Write Block Navigation” on page 73
¢ “Enhanced S-Function Builder” on page 73

e “Miscellaneous Block Enhancements” on page 74

Fixed-Point Block Library

Simulink now includes the latest version (4.0) of the Fixed-Point Blockset.
The library was previously available only as a separately installed option.
You must have a Fixed-Point Blockset license to run models containing
fixed-point blocks in fixed-point mode. However, you can open, edit, and
run such models in floating-point mode, regardless of whether you have a
Fixed-Point Blockset license. This change facilitates sharing of fixed-point
models in large organizations by eliminating the need for all users in a
group to have a Fixed-Point Blockset license in order to run or modifymodels
containing fixed-point blocks. See “Installation and Licensing” in the
Simulink Fixed-Point Blockset release notes for information on how to run
models containing fixed-point blocks when you do not have a Fixed-Point
Blockset license.

This release also unifies many core Simulink and Fixed-Point Blockset blocks
that have similar functionality. For example, the Sum block in the Simulink
Math Operations library and the Sum block in the Fixed-Point Blockset Math
library are now the same block. As a result, you no longer have to replace any
of the unified blocks when switching from built-in to fixed-point data types and
vice versa. You can change the data types of the blocks simply by selecting the
appropriate settings on their parameter dialog boxes. See “Unified Simulink
and Fixed-Point Blockset Blocks” in the Simulink Fixed-Point Blockset release
notes for more information and for a list of blocks that this release unifies.

71

Simulink® Release Notes

72

Note When you open an existing model, Simulink 5.0 updates the model to
use the unified version of a standard or Fixed-Point Blockset block wherever
an instance of that block occurs in the model. Simulink sets the parameters of
the unified block to preserve the behavior of the original block. For example,
wherever your existing model contains a Sum block from the Fixed-Point
Blockset library, Simulink replaces the Fixed-Point Blockset version with

a unified Sum block set to operate as a fixed-point block. This automatic
updating ensures that your existing model runs the same in Simulink 5.0 as
it did in previous releases of Simulink.

Lookup Table Editor

The Lookup Table Editor allows you to find and edit the contents of look-up
tables used by look-up table blocks. See “Lookup Table Editor” in the online
Simulink documentation for more information.

Model Verification Block Library

Simulink now includes a library of model verification blocks that enable you
to create self-validating models. For example, you can use the blocks to test
that signals do not exceed specified limits during simulation. When you are
satisfied that a model is correct, you can turn error-checking off by disabling
the model verification blocks. You do not have to physically remove them
from the model. The library includes set of blocks preconfigured to check for
common types of errors, for example, signals that exceed a specified upper or
lower bound. See “Model Verification” in the online Simulink documentation
for more information.

Signal Builder Block

The new Signal Builder block allows you to create interchangeable groups of
signal sources and quickly switch the groups into and out of a model. The
Signal Builder block’s signal editor allows you to define the waveforms of the
signals output by the block. You can specify any waveform that is piecewise
linear. Signal groups can greatly facilitate testing a model, especially when
used in conjunction with Simulink assertion blocks and the optional Model
Coverage Tool. See “Working with Signal Groups” for more information.

Version 5.0 (R13) Simulink

DocBlock

The new DocBlock block allows you to create text that documents a model
and save that text with the model.

Rate Transition Block

Simulink now includes a Rate Transition block that allows you to specify the
data transfer mechanism between two rates of a multirate system. See Rate
Transition in the online Simulink block reference for more information.

Block Library Reorganization

The Simulink Block Library has been reorganized to simplify accessing blocks
with related functionality.

Model Linearization Blocks

This release introduces two blocks that generate linear models from a
Simulink model at various times during a simulation. The Time-Based
Linearization block generates linear models at specified time steps. The
Trigger-Based Linearization block generates models when triggered by events
appearing at its trigger port.

Data Store Read/Write Block Navigation

This release allows you to navigate among the blocks that define and access
data stores by clicking on the names of associated blocks listed in the dialog
box of each block. See Data Store Memory, Data Store Read, and Data Store
Write for more information.

Enhanced S-Function Builder

The S-Function Builder has been enhanced to generate S-functions with the
following additional capabilities

® Multiple ports
e Support for all builtin datatypes

Support for 2-D signals

Support for complex signals

73

Simulink® Release Notes

74

See “Building S-Functions Automatically” for more information.

Miscellaneous Block Enhancements
This release introduces the following enhancements to Simulink blocks.

Math Function Block. This release significantly speeds up the simuluation
of the Math Function block’s exponential math functions. All functions now
support both double- and single-precision floating-point inputs and outputs.
The mod and rem functions also support inputs and outputs of all integer
types. The transpose and hermitian functions support all data types. When
optimizations are enabled, the conjugate operation on a real signal invokes
the block reduction optimization, as that case is a no-op. In-place multiplies
for the magnitude”2 operation are used for reused block I/O on real signals.

Gain Block. The Gain block now performs block reduction when block
reduction is on, inline parameters=0N, and the gain is both nontunable
and unity.

Width Block. The Width block now includes a parameter to specify the
datatype of the output.

Real Data Type Support. The following blocks now operate on both double
precision and single precision floating point signals:

¢ Dot Product

* Trignometric

e Matrix Inversion

Block Data Type Table

To view a table that summarizes the data types supported by the blocks in the
Simulink and Fixed-Point block libraries, execute the following command at
the MATLAB command line:

showblockdatatypetable

Version 5.0 (R13) Simulink

Simulation Enhancements

Simulink 5.0 includes the following new features and enhancements to
simulation of Simulink models.

“Invalid Loop Highlighting” on page 75

® “Algebraic Loop Highlighting” on page 75

® “Conditional Execution Behavior” on page 75

® “Reorganized Simulation Diagnostics” on page 76

¢ “Enhanced Diagnostic Viewer” on page 76

Invalid Loop Highlighting

Simulink now detects and highlights several kinds of invalid loops:

¢ Loops that create invalid function-call connections or an attempt to modify
the input/output arguments of a function call

* Loops containing non-latched triggered subsystems
e Self-triggering subsystems

® Loops containing action subsystems in a cycle

This makes it is easier to identify and fix the loop. See “Avoiding Invalid
Loops” for more information.

Algebraic Loop Highlighting

Simulink now optionally highlights algebraic loops when you update or
simulate a model. See “Highlighting Algebraic Loops” for more information.
The ashow debug command without any arguments now lists all of a model’s
algebraic loops in the MATLAB command window.

Conditional Execution Behavior

This release introduces a new optimization called conditional execution
behavior. Previously, when simulating models containing Switch or Multiport
Switch blocks, Simulink executed all blocks required to compute all inputs to
each switch at each time step. In this release, Simulink, by default, executes
only the blocks required to compute the control input and the data input

75

Simulink® Release Notes

76

selected by the control input at each time step. Similarly, code generated from
the model by Real-Time Workshop executes only the code needed to compute
the control input and the selected data input. This optimization speeds
simulation and execution of code generated from the model. See “Conditional
Execution Behavior” for more information.

Reorganized Simulation Diagnostics

The Diagnostics Pane of the Simulation Parameters dialog box now
groups diagnostics by functionality. This makes it easier to find and configure
related diagnostics.

Enhanced Diagnostic Viewer

This release introduces an enhanced Diagnostic Viewer. Improvements
include

¢ Identical appearance on UNIX and Windows

¢ Hyperlinks to Simulink, Stateflow, and Real-Time Workshop objects that
caused the errors displayed in the viewer

® Sortable error list
Clicking a column head sorts the error list by the contents of that column.
¢ Configurable content

The View menu allows you to choose which information to display in the
viewer.

® Selectable font size
The FontSize menu allows you to choose the size of the font used to display
error messages.

See “Simulation Diagnostics Viewer” for more information.

Compatibility Considerations. New version of the Diagnostic Viewer is not
supported on the HP and IBM platforms.

Modeling Enhancements
The following enhancements facilitate creation of Simulink models.

Version 5.0 (R13) Simulink

“Enhanced Mask Editor” on page 77

“Production Hardware Characteristics” on page 78

“Including Symbols and Greek Letters in Block Diagrams” on page 78
“True Color Support” on page 78

“Print Details” on page 78

“Boolean Logic Signals” on page 78

“Model Discretizer” on page 78

Enhanced Mask Editor

This release introduces changes to the Mask Editor designed to improve
usability. Changes include

Block parameter information moves from the Initialization pane to a new
pane entitled Parameters.

The Parameters pane allows you to specify a callback function to be called
when the value of a parameter changes.

The Parameters pane allows you to specify via check boxes whether a
parameter is visible on the masked block’s dialog box and whether a
parameter is tunable.

The Icon pane provides a list of examples of all the types of drawing
commands that can be used to draw the block’s icon.

See “Creating Masked Subsystems” in the online Simulink documentation
for more information.

Compatibility Considerations.

Simulink Editor’s Find dialog is not supported on the HP and IBM
platforms. Use the find_system command instead.

Enhanced version of Mask Editor is not supported on the HP and IBM
platforms.

77

Simulink® Release Notes

78

Including Symbols and Greek Letters in Block Diagrams

This release allows you to include symbols, Greek letters, and other formatting
in annotations, masked subsystem port labels, and masked subsystem icon
text. You do this by including TeX formatting commands in the annotation,
port label, or icon text.

Production Hardware Characteristics

Production hardware characteristics is a new setting on the Advanced
pane of the Simulation parameters dialog box. This setting, intended for
use in modeling, simulating, and generating code for digital systems, allows
you to specify the sizes of the data types supported by the system being
modeled. Simulink uses this information to automate the choice of data types
for signals output by some blocks.

True Color Support

This release allows you to use any color supported by your system as the
foreground or background colors of a block diagram. See “Specifying Block
Diagram Colors” in the online documentation for more information.

Print Details

This command generates an HTML report detailing the contents of the
currently selected model (see “Generating a Model Report” in the online
documentation for more information).

Boolean Logic Signals

In previous releases, the Boolean logic signals optimization was off by
default for new models (see “Implement logic signals as boolean data (vs.
double)” in the online Simulink documentation for a description of this
option). In the current release, the optimization is on by default for new
models. This change does not affect existing models.

Model Discretizer

The Model Discretizer tool selectively replaces continuous Simulink blocks
with discrete equivalents. Discretization is critical in digital controller design
for dynamic systems and for hardware in the loop simulations. You can use
this tool to prepare continuous models for use with the Real-Time Workshop

Version 5.0 (R13) Simulink

Embedded Coder, which supports only discrete blocks. See “Model Discretizer”
in the online documentation for more information.

Platform Limitations for HP and IBM

The following are platform limitations for Simulink 5.0 for the HP and IBM
platforms that are new limitations, as of Version 5.0.

¢ The Parameter dialog for the Configuration Subsystem Block is not
supported on the HP and IBM platforms. Instead, use the set_param
command to set the block’s parameters.

* The View Changes dialog box for modified library links is not supported
on the HP and IBM platforms. Instead, select the modified link and
execute 1d=get param(gcb, 'LinkData') to get a structure that lists the
parameter differences between the library and local instance of the block.
Edit this structure and execute set_param(gcb, 'LinkData',1d) to apply
the changes.

¢ The GUI interface to the Simulink Debugger is not supported on the HP
and IBM platforms. Use the command-line interface instead.

® Model Discretizer is not supported on the HP and IBM platforms.

Note The Release 12 and 12.1 platform limitations for Simulink for the HP
and IBM platforms still apply to Release 13. These are listed below.

The following Java-dependent Simulink features, introduced in Simulink 4.1,
are not available on the HP and IBM platforms.

¢ Simulink Data Class Designer
¢ S-Function Builder

® Look-Up Table Editor

79

Simulink® Release Notes

80

Version 4.1 (R12+) Simulink

This table summarizes what’s new in V4.1 (R12+):

New Features and | Version Fixed Bugs and Related

Changes Compatibility Known Problems Documentation at
Considerations Web Site

Yes Yes—Details labeled Fixed Bugs No

Details below

as Compatibility
Considerations,
below. See also
Summary.

New features and changes introduced in this version are organized by these
topics:

¢ “Simulink Editor” on page 80

“Modeling Enhancements” on page 82

“Simulink Debugger” on page 85

“Block Library” on page 86

“Triggered Subsystems” on page 88

“Running Simulink 4.1 Models in Simulink 4.0” on page 89

“Direct Feedthrough Compensation Deprecated” on page 90

“Improved Invalid Model Configuration Diagnostics” on page 90

“Bug Fixes” on page 91

Simulink Editor

This section describes enhancements to the Simulink Editor.

Undo Move
In Simulink 4.1, the Undo command on the Simulink Edit menu restores
blocks, annotations, lines, and nodes that have moved to their original
locations (see “Undoing a Command” in Using Simulink).

Version 4.1 [R12+) Simulink

Undo Subsystem Creation

In Simulink 4.1, the Undo command on the Simulink Edit menu restores
blocks that have been grouped into a subsystem to their original level in the
model (see “Undoing Subsystem Creation” in Using Simulink).

Autoconnecting Blocks

This version makes connecting blocks significantly easier. To connect a set
of source blocks to a target block, simply select the source blocks, hold down
the Ctrl key and left-click the target block. Simulink draws connecting
lines between the source blocks and the destination block, neatly routing
lines around intervening blocks. To connect a source block to a set of target
blocks, select the target blocks, hold down the Ctrl key and left--click the
source block. To connect two blocks, select the source block, and left-click the
destination block while holding down the Ctrl key. Simulink connects as
many ports on the two blocks as possible (see).

Autorouting Signal Lines

Simulink now routes signal lines around intervening blocks when you
connect them either interactively (by dragging the connecting lines or

using autoconnect) or programmatically via the add_line command’s new
‘autorouting' option (see “Autorouting Option Added to add_line Command”
on page 82).

Displaying Storage Class on Lines
This version adds an item to the Format menu, which toggles the display of
(nonAuto) storage class on signal lines.

Save Models in Release 11 Format

This release can save post-Release 11 models in Release 11 format. Simulink
3 (Release 11) can load and run converted models that do not use any
post-Release 11 features of Simulink. Simulink 3 can load converted models
that use post-Release 11 features but may not be able to simulate the model
correctly. Use the Save as option from the Simulink File menu or the
following command to save a model in Release 11 format.

slsaveas(SYS)

81

Simulink® Release Notes

82

Modeling Enhancements

This section describes enhancements to Simulink dynamic system modeling
tools.

Autorouting Option Added to add_line Command

The add_line command now optionally routes lines around intervening
blocks and annotations. For example, the following command autoroutes a
connection between two blocks in the vdp model.

add_line('vdp', 'Product/1', 'Mu/1','autorouting','on')

The autorouting option is off by default. See add_line in Using Simulink
for more information.

S-Function Builder

The S-Function Builder generates an S-function from specifications that you
enter in a dialog box. It provides an easy way for you to incorporate existing
code into a Simulink model.

add_param, delete_param
With this version, you can add custom parameters to your block diagrams.

add_param('modelname', 'MyParameterName', 'value')
delete_param('modelname', 'MyParameterName')

You can also use the model handle in place of the model name. See add_param
and delete_paramin Using Simulink for more information.

Connection Callbacks

With this version, you can use set_param to set callbacks on ports that

are triggered by changes in the ports’ connectivity. The callback function
parameter is named ConnectionCallback. When the port’s connectivity
changes (addition/deletion of line connected to the port, connection of new
block to the port, etc.), Simulink invokes the callback function with the port
handle as its argument. See “Port Callback Parameters” for more information.

Version 4.1 [R12+) Simulink

Saving Block User Data in Model Files

This version adds a new block parameter, named UserDataPersistent, that
is of f by default. Setting this parameter on, e.g.,

set_param(block-name, 'UserDataPersistent', 'on')

causes Simulink to include a block’s user data (i.e., the value of the block’s
UserData parameter) in the model file when you save a model. Simulink
encodes the user data as ASCII characters and saves the encoded data in a
new section of the model file called MatData. This mechanism works with all
forms of MATLAB data, including arrays, structures, objects, and Simulink
data objects. See “Associating User Data with Blocks” for more information.

Absolute Tolerance Enhancements

This version adds a dialog item for setting the absolute tolerance for each
state in the State-Space block, the Transfer Fcn block, and the Zero-Pole
block. With this enhancement, you can now specify the absolute tolerance for
solving every continuous state in your model.

Block Reduction Enhancements

S-functions may now request that they be eliminated from the compiled
model. To do this, call ssSetBlockReduction (true) inside the S-function.
This is an advanced feature provided for customers writing S-functions who
want to optimize the generated code produced for their S-function. Graphical
connectivity is now remapped during block reduction, eliminating a source
of error during reduction (e.g., a memory reference error used to occur if
Simulink eliminated a block connected to a scope). Block reduction is now on
by default, and a Simulink preference has been added for the option.

Boolean Logic Signals Preference

The Simulink Preferences dialog box now allows you to specify the use of
Boolean logic signals by default. See “Setting Simulink Preferences” in
Getting Started with Simulink for more information.

83

Simulink® Release Notes

84

Subsystem Semantics Demos

Typing s1_subsys_semantics at the MATLAB prompt now displays a set of
models that illustrate the semantics of various types of subsystem blocks. The
demos include formal definitions of function-call subsystems.

Enhanced Engine Model Demos

The top and bottom dead center detection in the engine and enginewc demo
models now use a reset integrator. In previous versions, the models used

a triggered subsystem to detect angular position. This method resulted in
inefficiencies and a slower, less accurate solution. In addition, self-triggering
subsystems are now illegal in Simulink.

Setting Block Sorting Priority on Virtual Subsystems

In Simulink 4.0, it was an error to specify a priority on a virtual subsystem.
In Simulink 4.1, you can specify priorities on virtual subsystems.

Using ~ in Filenames on UNIX

Now all filename fields in Simulink support the mapping of the ~
character in filenames. For example, in a To File block, you can
specify ~/outdir/file.mat. On most systems, this will expand to
/home/$USER/outdir/file.mat.

Improved Warning About Slow Signals Feeding the Enable
Port of an Enabled Subsystem Containing Fast Blocks

In a multitasking environment, deterministic results cannot be guaranteed
if a slow signal feeds the enable port of an enabled subsystem that contains
fast blocks. In previous versions, Simulink did not issue a warning in some
cases where this may occur.

Flagging Function-Call Subsystem Cycles

In previous versions, Simulink allowed you to build models containing
function-call-cycles, i.e., function-call subsystems that directly or indirectly
call themselves.

Version 4.1 [R12+) Simulink

S-Function Creand
Outt

Constant2 S-Function

- function)
S Out1

Function-Call

Such models cannot be correctly simulated. Accordingly, Simulink now
displays an error message when you attempt to run or update a diagram
containing function-call cycles.

Simulink Debugger

This section describes enhancements to the Simulink debugger.

Enhancement to Sorted List Display

The Simulink debugger (sldebug) sorted list command, slist, now displays
the names of the S-functions residing inside S-function blocks.

Improved Messages in Accelerated Mode

The trace, break, zcbreak, nanbreak, and minor commands now indicate
that they are disabled when in accelerator mode and you need to switch to
normal mode to activate them. The spacing of several messages has been
fixed so the text aligns correctly.

Breakpoints on a Function-Call Subsystem

You can now put a break point on a function-call subsystem. Simulink breaks
when the subsystem is executed. In Release 12, entering the quit command
while at a breakpoint within a function-call subsystem wouldn’t always quit
the debugger. Now the quit command ends the debugging session once the
initiating (calling) Stateflow chart or S-function finishes executing its time
step.

85

Simulink® Release Notes

86

Displaying and Probing Virtual Blocks

The display and probe commands now work for virtual blocks.

Stepping Stateflow Charts
You can now step execution of a model into a Stateflow chart.

Block Library

This section describes enhancements to the Simulink block libraries.

Unified Pulse Generator

This version merges the Discrete Pulse Generator block into the Pulse
Generator block. The combined block has two modes: time-based and
sample-based (discrete). Time-based mode varies the step size when a
variable step solver is being used to ensure that simulation steps occur at
pulse on/off transitions. When a fixed step solver is used, the time-based mode
computes a fixed step size that ensures that a simulation step occurs at every
pulse transition. The Pulse Generator block also outputs a pulse of any real
data type in sample-based as well as time-based mode.

Control Flow Blocks

Simulink 4.1 adds an If block and Switch Case block that can drive
conditionally executed subsystems that contain instances of the new Action
Port block. Action subsystems are similar to enabled subsystems, except that
all blocks must run at the same rate as the If or Switch Case block.

This version also adds a For Iterator block and a While Iterator block. When
placed in a subsystem, these blocks cause all of the blocks in the system to
run multiple cycles during a time step. The block cycle in a For Iterator
subsystem runs a specified number of times. The block cycle in a While
Iterator subsystem runs until a specified condition is false. A user can limit
execution of a While Iterator subsystem to a specified number of iterations
to avoid infinite loops.

The new Assignment block allows a model to assign values to specified
elements of a signal.

Version 4.1 [R12+) Simulink

Bus Creator

Simulink 4.1 adds a Bus Creator block that combines the output of multiple
blocks into a single signal bus. A model can use the existing Signal Selector
block to extract signals from the bus. The block’s dialog box allows you to
assign names to signals on the bus or allow the signals to inherit their names
from their sources. When you double-click on a signal name in the block
dialog, the source block is highlighted. There is no execution overhead in the
use of bus creator/bus selector blocks.

Sine Wave Block Enhancements

The Sine Wave block now supports a bias factor that eliminates the need
to sum with a Constant block. The Sine Wave block also has a new
computational mode. This mode (called sample-based) eliminates the
dependence on absolute time.

Enhanced Flip-Flop Blocks

Simulink Extras (simulink_extras.mdl) contains a set flip-flop blocks. These
blocks now use the new triggered subsystem latching semantics. In addition,
the S-R Flip-Flop block now models a physical NOR gate (i.e., S=1, R=1 => Q=0,
Q!=0, the undefined state).

Additional Data Type Support

The Discrete-Time Integrator and Rounding Function blocks now handle
single as well as double values. The Transport Delay, Unit Delay, Variable
Transport Delay, Memory, Merge, and Outport blocks can specify nonzero
initial conditions when operating on fixed-point signals.

Simulink Block Library Reorganization

The Simulink Block Library contains a new Subsystems sublibrary. The new
library contains most of the new control flow blocks as well as subsystem
and subsystem-related blocks that used to reside in the Signals & Systems
library. The subsystems in the new library each contain the minimum set of
blocks needed to create a functioning subsystem, e.g., an input port and an
output port.

87

Simulink® Release Notes

88

Compatibility Considerations. The Simulink Block Library contains a new
Subsystems sublibrary. The new library contains most of the new control flow
blocks as well as subsystem and subsystem-related blocks that used to reside
in the Signals & Systems library. The subsystems in the new library each
contain the minimum set of blocks needed to create a functioning subsystem,
e.g., an input port and an output port.

Scope Enhancements
The Scope block includes the following enhancements:

¢ A floating version of the Scope added to the Sinks block library
¢ Floating Scope saves the signals selected for display in the model file

¢ The Scope’s toolbar buttons for toggling between floating/nonfloating mode,
restoring saved axes, locking/unlocking axes, and displaying the Signal
Selector

S-Functions Sorted Like Built-In Blocks

Compatibility Considerations. When sorting blocks, Simulink now treats
S-function blocks the way it treats built-in blocks. This means that S-functions
now work correctly in nonvirtual subsystems when there is a direct feedback
connection (in Simulink 4.0 and prior, this wasn’t the case). It also means that
models compile (update diagram) faster. As a side effect, the execution order
for S-functions that incorrectly set the direct feedthrough flag differs from
that used in previous versions of Simulink. Consequently, models that contain
invalid S-functions may produce different answers in this version of Simulink.

Triggered Subsystems

This section describes features and changes to the Simulink triggered
subsystems.

Added Latched Triggered Subsystems

Now triggered subsystems enable you to implement software triggering,
hardware triggering, or a combination of the two. Software triggering is
defined as

Version 4.1 [R12+) Simulink

if (trigger_signal edge _detected) {
out(t) = f(in(t));
}

Hardware triggering is defined as

if (trigger_signal_edge_detected) {
out(t) = f(in(t-h)); // h == last step size
}

Compatibility Considerations. Previous to this version, triggered
subsystems provided software triggering and a form of hardware triggering
when a cycle involving triggered subsystems existed. Now, you must explicitly
specify whether or not you'd like software or hardware triggering. This

is done by selecting 'Latch (buffer) input' on the Inport blocks in a
triggered subsystem.

Each input port of a triggered subsystem configures whether or not the
input should be latched. A latched input provides the hardware-triggering
semantics for that input port. Type s1_subsys_semantics at the MATLAB
prompt for more information.

Self-Triggering Subsystems Are No Longer Allowed

Compatibility Considerations. Before this version, you could define the
output of a triggered subsystem to directly feed back into the trigger port
of the subsystem (with potentially other additive signals). This resulted in
an implicit delay. Now you must explicitly define the delay by inserting

a memory block.

Running Simulink 4.1 Models in Simulink 4.0

Simulink 4.0 can run models created or saved by Simulink 4.1, with the
provisions outlined in the following.

Compatibility Considerations

Simulink 4.0 can run models created or saved by Simulink 4.1 as long as the
models do not use features introduced in the new version, including new
block types and block parameters. In particular, you should not attempt to

89

Simulink® Release Notes

90

use Simulink 4.0 to simulate or even open models that use the new Simulink
control flow blocks. Opening such models cause Simulink 4.0 to crash.

Direct Feedthrough Compensation Deprecated

If an S-function needs the current value of its input to compute its output, it
must set its direct feedthrough flag to true.

Compatibility Considerations

Previously, if a direct feedthrough S-function failed to do this, Simulink
tried to provide a valid signal to the S-function’s md1Output (M-file
flag=3) or md1GetTimeOfNextVarHit (M-file flag=4) methods. This
special compensation mode for S-functions was flawed. For this reason,
the current version deprecates the mode, though making it available

as an option. In this version, by default, if an S-function sets its direct
feedthrough flag to false during initialization, Simulink sets the S-function’s
input signal to NULL (or a NaN signal for M-file S-functions) during

the md10utput or md1GetTimeOfNextVarHit methods. Thus, in this
version, models with S-function(s) may produce segmentation violations.
See matlabroot/simulink/src/sfuntmpl_directfeed.txt for more
information.

Improved Invalid Model Configuration Diagnostics

This version of Simulink does a better job of detecting and flagging invalid
modeling constructs in Simulink models. The changes include:

¢ Direct feedthrough compensation no longer occurs by default for S-functions
(see “Direct Feedthrough Compensation Deprecated” on page 90).

e S-functions are now sorted like built-in blocks (see “S-Functions Sorted
Like Built-In Blocks” on page 88).

¢ Simulink no longer inserts implicit latches in triggered subsystems that
directly or indirectly trigger themselves (see “Self-Triggering Subsystems
Are No Longer Allowed” on page 89, above). Instead it signals an error
when it detects a triggered subsystem loop with unlatched inputs. To avoid
the error, you must select the Latch option on the triggered subsystem’s
input ports.

Version 4.1 [R12+) Simulink

¢ Simulink now signals an error when it detects invalid configurations
of function-call subsystems. See the Subsystem Examples block in the
Subsystems library for examples of illegal modeling constructs involving
function-call subsystems. You can disable this diagnostic by setting the
Invalid FcnCall Connection parameter on the Diagnostics pane of the
Simulation Parameters dialog box to none or warning.

Compatibility Considerations

Consequently models that ran in previous versions of Simulink (sometimes
producing incorrect results) may not run in the current release.

Bug Fixes

This section lists fixes to bugs that occurred in the previous version of
Simulink.

Variable sample time S-functions

Simulink no longer crashes when an S-function with variable sample time is
placed in an atomic subsystem.

Bus selector detection of duplicated names

A bug related to the detection of a duplicated name in a bus that was feeding
a Bus Selector block was fixed.

Optimize block memory use

In Simulink 4.0, the Continuous and Discrete Transfer Function blocks and
the Discrete Filter block used more memory than they needed to, particularly
for the case of many poles. They now use an optimal amount of memory.

Miscellaneous fixes to the model loader
Miscellaneous bug fixes have been performed on the model loader:

¢ The loader and saver now retain any comment lines (i.e., lines that begin
with #) that are found at the top of the model file.

¢ The loader does not crash on Windows NT when file sizes are integer
multiples of 4096.

91

Simulink® Release Notes

92

® The loader does not hang on corrupt models in which blocks with duplicate
names are found.

Profiler fixes

The Simulink profiler now saves its files in the temporary directory. See the
MATLAB command tempdir. The help was also updated.

Chirp block fix

The Chirp block now sweeps through frequencies correctly from the initial
frequency at the simulation start time to the target frequency at the target
time.

Function-call subsystem bug fixes
This version fixes several bugs related to the execution orders of function-call
subsystems.

Sorting bug fix

Previous versions incorrectly computed the direct feedthrough setting for
nonvirtual subsystems in triggered/function-call subsystems. This resulted in
incorrect execution (sorting) orders. Now all nonvirtual subsystems within
triggered subsystems have their direct feedthrough (needs input) flags set
for all input ports. This is needed because a nonvirtual subsystem with a
triggered sample time executes both its output and update methods together
within the context of the model’s output method.

Fixed handling of grounded/unconnected inputs feeding
certain blocks
Simulink 4.0 incorrectly handled grounded or unconnected inputs to level-1

and level-2 S-functions requiring contiguous inputs and to some Matrix
blocks. This has been fixed in Simulink 4.1.

Version 4.0 (R12) Simulink

Version 4.0 (R12) Simulink

This table summarizes what’s new in V4.0 (R12):

New Features and | Version Fixed Bugs and Related
Changes Compatibility Known Problems Documentation at
Considerations Web Site
Yes Yes—Details labeled No No
Details below as Compatibility
Considerations,
below. See also
Summary.

New features and changes introduced in this version are organized by these
topics:

¢ “Simulink Editor” on page 93

¢ “Modeling Enhancements” on page 96

® “Simulink Debugger” on page 98

¢ “Block Library” on page 98

* “SB2SL” on page 101

® “Port Name Property” on page 102

Simulink Editor

This section describes enhancements to the Simulink Editor.

Preferences

The Simulink Preferences dialog box allows you to specify default settings
for many options (see “Setting Simulink Preferences” in Getting Started
with Simulink).

Text Alignment

Simulink 4.0 allows you to choose various alignments for annotation text. To
choose an alignment for an annotation, select the annotation and then select

93

Simulink® Release Notes

94

Text Alignment from the editor menubar or context (right-click) menu (see
“Annotating Diagrams”).

UNIX Context Menus

The UNIX version of Simulink 4.0 now has context menus for block diagrams.
Click the right button on your mouse to display the menu.

Library Link Enhancements

Simulink 4.0 optionally displays an arrow in each block that represents a
library link in a model. Simulink 4.0 also allows you to modify a link in a
model and propagate the changes back to the library (see “Modifying a Linked
Subsystem” in Using Simulink).

Note Simulink displays "Parameterized Link" on the parameter dialog box
of a masked subsystem whose parameters differ from the library reference
block to which the masked subsystem is linked. This feature, which is not

documented in Using Simulink, allows you to determine quickly whether a
library link differs from its reference.

Find Dialog Box

The Find dialog box enables you to search Simulink models and Stateflow

charts for objects that satisfy specified search criteria. You can use the dialog
box to find annotations, blocks, signals, states, state transitions, etc. To invoke
the Find dialog, select Find from the Simulink Edit menu (see “The Finder”).

Model Browser
The Model Browser’s toolbar includes the following new buttons:
e Show Library Links
Shows library links as nodes in the browser tree.
¢ Look Under Masks

Shows the contents of masked blocks as nodes in the browser tree.

Version 4.0 (R12) Simulink

Single Window Mode

Simulink now provides two modes for opening subsystems. In multiwindow
mode, Simulink opens each subsystem in a new window. In single-window
mode, Simulink closes the parent and opens the subsystem (see "Window

Reuse" in Using Simulink).

Keyboard Navigation

Simulink 4.0 provides the following new keyboard shortcuts.

Key Action

Tab Selects the next block in the block
diagram.

Shift+Tab Selects the previous block in the
block diagram.

Ctrl+Tab Cycles between the browser tree
pane and the diagram pane when
the model browser is enabled.

Enter Opens the currently selected
subsystem.

Esc Opens the parent of the current

subsystem.

Enhanced Library Browser

The Library Browser incorporates the following new features:

¢ Blocks no longer appear as browser tree nodes. Instead, they appear as

icons in the preview pane.

¢ The preview pane has moved from beneath the library tree pane to beside
the tree pane. You can create instances of blocks displayed in the preview
pane by dragging them from the preview pane and dropping them in a

model.

e Splitter bars now divide the browser’s panes, allowing the panes to be

independently resized.

95

Simulink® Release Notes

96

® Double-clicking a block’s icon opens the block’s parameter dialog box with
all fields disabled. This allows you to inspect, but not modify, a library
block’s parameters.

® Double-clicking a library block opens the library in the preview pane.

® You can now insert a block in the topmost model on your screen by
right-clicking the block in the preview pane and selecting Insert in... from
the context menu that appears. If no model is open or the topmost model is
a locked library, the Library Browser offers to create a model in which to
insert the block.

® The browser now contains a menu with File, Edit, and Help options.

® The block help text pane has moved from the bottom of the Library Browser
to the top.

¢ Selecting Find from the Library Browser’s Edit menu displays a modeless
Find dialog box.

® The browser’s search feature is much faster and supports regular
expressions.

Help Menus

Simulink 4.0 adds a Help menu to the menu bar on model and library
windows. The help item on a block context menu displays a help page for
the block. The help item on the model context menu displays the first page
of the Using Simulink book.

Modeling Enhancements

Hierarchical Variable Scoping

This release extends the ability of Simulink to resolve references to variables
in masked subsystems. Previously Simulink could resolve references only to
variables in a block’s local workspace.With this release, Simulink will resolve
references to variables located anywhere within the workspace hierarchy
containing the block (see "The Mask Workspace" in Using Simulink).

Version 4.0 (R12) Simulink

Note In some cases, hierarchical scoping will cause some models to behave
differently in the current release than in previous releases of Simulink.

Matrix Signals

Many Simulink blocks can now accept or output matrix signals. A matrix
signal is a two-dimensional array of signal elements represented by a matrix.
Each matrix element represents the value of the corresponding signal element
at the current time step. In addition to matrix signals, Simulink also supports
scalar (dimensionless) signals and vector signals (one-dimensional arrays

of signals). Simulink can optionally thicken (select Wide Lines from the
Format menu) and display the dimensions of lines (select Line Dimensions
from the Format menu) that carry vector or matrix signals. When you select
the Line Dimensions option, Simulink displays a label of the form [r x c]
above a matrix signal line, where r is the number of rows and c is the number
of columns. For example, the label [2 x 3] indicates that the line carries a
two-row by three-column matrix signal.

You can use Simulink source blocks, such as a Sine Wave or a Constant block,
to generate matrix signals. For example, to create a time-invariant matrix
signal, insert a Constant block in your model and set its Constant Value
parameter to any MATLAB expression that evaluates to a matrix, e.g., [1

2; 3 4], that represents the desired signal. See "Working with Signals" in
Using Simulink for more information.

Simulink Data Obijects

Simulink data objects allow a model to capture user-defined information
about parameters and signals, such as minimum and maximum values, units,
and so on (see "Working with Data Objects" in Using Simulink).

Block Execution Order

Simulink now optionally displays the execution order of each block on the
model’s block diagram (see "Displaying Block Execution Order" in Using
Simulink).

97

Simulink® Release Notes

98

Simulink Debugger

This section describes enhancements to the Simulink debugger.

GUI Debugger Interface

Simulink 4.0 introduces a graphical user interface (GUI) for the Simulink
Debugger. For more information, see "Simulink Debugger" in the online help
for Simulink (see "Simulink Debugger" in Using Simulink).

Block Library

This section describes enhancements to the Simulink block libraries.

Product Block

The Product block now supports both element-by-element and matrix
multiplication and inversion of inputs. The block’s parameter dialog includes
a new Multiplication parameter that allows you to specify whether the block
should multiply or invert inputs element-by-element or matrix-by-matrix.

Gain Block

The Gain block now supports matrix as well as element-wise multiplication
of the input signal by a gain factor. Both input signals and gain factors can
be matrices. The block’s parameter dialog includes a new Multiplication
parameter that allows you to choose the following options:

e K.*u (element-wise product)

e K*u (matrix product with the gain as the left operand)

® u*K (matrix product with the gain as the right operand)

Math Function Block

The Math Function block adds two new matrix-specific functions: transpose
and Hermitian. The first function outputs the transpose of the input matrix.
The second function outputs the complex conjugate transpose (Hermitian) of
the input matrix.

Version 4.0 (R12) Simulink

Reshape Block

Simulink 4.0 introduces the Reshape block, which changes the dimensionality
of its input signals, based on an Output dimensionality parameter that you
specify. For example, the block can change an n-element vector to a 1-by-N or
N-by-1 matrix signal and vice versa. You can find the Reshape block in the
Simulink Signals & Systems library.

Multiplexing Matrix Signals

The Simulink Mux, Demux, and Bus Selector blocks have been enhanced to
support multiplexing of matrix signals.

Function Call Iteration Parameter

Simulink 4.0 adds a Number of iterations parameter to the Function Call
Generator block. This parameter allows you to specify the number of times
the target block is called per time step.

Probing Signal Dimensionality

The Probe block now optionally outputs the dimensionality of the signal
connected to its input.

Configurable Subsystem

The Configurable Subsystem block has been reimplemented to make it easier
to use. The configurable subsystem block now has a Blocks menu that allows
you to choose which block the subsystem represents. To display the menu,
select the configurable subsystem and then Blocks from the Simulink editor’s
Edit or context (right click) menu.

Look-Up Table Blocks

This release provides four new Look-Up Table (LUT) blocks.
¢ Direct Look-Up Table (n-D)

® Look-Up Table (n-D)

¢ PreLookup Index Search (Obsolete)

¢ Interpolation (n-D) Using PreLookup (Obsolete)

99

Simulink® Release Notes

100

The blocks reside in the Simulink Functions and Tables block library.

Polynomial Block

The Polynomial block outputs a polynomial function of its input. The block
resides in the Simulink Functions and Tables block library.

Signal Specification

The Signal Specification block allows you to specify the attributes that the
input signal must satisfy. If the input signal does not meet the specification,
the block generates an error.

ADA S-Functions

Simulink now supports S-functions coded in ADA. See "Creating Ada
S-Functions" in Writing S-Functions for more information.

Bitwise Logical Operator Block

The Bitwise Operator block is a new block that logically masks, inverts,
or shifts the bits of an unsigned integer signal. See the online Simulink
documentation for details.

Atomic Subsystems

Simulink 4.0 allows you to designate subsystems as atomic as opposed to
virtual. An atomic subsystem is a true subsystem. When simulating a model,
Simulink executes all blocks contained by an atomic subsystem block before
executing the next block of the containing model (or atomic subsystem).

By declaring a subsystem atomic, you guarantee that Simulink completes
execution of the subsystem before executing any other blocks at the same
level in the model hierarchy. See "Atomic Subsystems" in Using Simulink
for more information.

Note Conditionally executed subsystems are inherently atomic. Simulink
does not allow you to specify them as atomic or virtual.

Version 4.0 (R12) Simulink

SB2SL

SB2SL Extends Code Generation Support

SB2SL, which is included as part of Simulink, allows you to translate
SystemBuild SuperBlocks to Simulink models.

For Release 12, SB2SL 2.1 has been enhanced to provide more complete
support for use with the Real-Time Workshop. If you use the Real-Time
Workshop 4.0 to generate code for models you have converted from
SystemBuild to Simulink (using SB2SL), then code is generated for most
translated blocks in the model.

The blocks that do not support code generation through the Real-Time
Workshop 4.0 are:

¢ ConditionBlock

® Decoder

¢ Encoder

® GainScheduler

¢ Interp Table (Archive library)

e ShiftRegister

Note SB2SL 2.1 also includes a number of important bug fixes.

101

Simulink® Release Notes

Port Name Property

In the current release, a port’s name property refers to the port’s (and line’s)
name, which, in the current release, can differ from the line’s label.

Compatibility Considerations
In previous releases, the name property of ports and lines referred to the label
of the line connected to the port. If you need to get the line’s label, invoke

get_param(p, 'label')

where p is the handle of the port.

102

Compatibility and Limitations Summary for Simulink

Compatibility and Limitations Summary for Simulink

This table summarizes new features and changes that might cause
incompatibilities when you upgrade from an earlier version, or when you
use files on multiple versions. Details are provided in the description of the
new feature or change.

Version (Release) | New Features and Changes with Version
Compatibility Impact

Latest Version See the Compatibility Considerations
V6.5 (R2006b) subheading for each of these new features or
changes:

¢ “Enhanced Lookup Table Blocks” on page 5

e “Parameter Objects Can Now Be Used to Specify
Model Configuration Parameters” on page 9

o “New Requirement for Calling MATLAB
Functions from Embedded MATLAB” on page 13

* “Type and Size Mismatch of Values Returned from
MATLAB Functions Generates Error” on page 14

® “Changes to Integrator Block’s Level Reset
Options” on page 10

o “Embedded MATLAB Function Blocks Cannot
Output Character Data” on page 15

V6.4.1 (R2006a+) None

103

Simulink® Release Notes

Version (Release) | New Features and Changes with Version
Compatibility Impact

V6.4 See the Compatibility Considerations
(R20064a) subheading for each of these new features or
changes:

¢ “Range-Checking for Parameter and Signal Object
Values” on page 18

¢ “Concatenate Block” on page 19

e “Built-in Block’s Initial Appearance Reflects
Parameter Settings” on page 20

o “Setting FIMATH Cast Before Sum to False
No Longer Supported in Embedded MATLAB
Function Blocks” on page 26

e “Type Mismatch of Scalar Output Data in
Embedded MATLAB Function Blocks Generates
Error” on page 27

¢ “Implicit Parameter Type Conversions No Longer
Supported in Embedded MATLAB Function
Blocks” on page 27

V6.3 See the Compatibility Considerations and/or
(R14SP3) Limitations subheading for each of these changes:
e “Model Referencing” on page 29

e “MEX-Files on Windows” on page 37

¢ “Fixed-Point Functions No Longer Supported for
Use in Signal Objects” on page 37

® “Parameter Object Expressions No Longer
Supported in Dialog Boxes” on page 37

V6.2 See the Compatibility Considerations and/or
(R14SP2) Limitations subheadings for each of these changes:

¢ “Rootlevel Input Ports” on page 39

104

Compatibility and Limitations Summary for Simulink

Version (Release)

New Features and Changes with Version
Compatibility Impact

V6.1
(R14SP1)

See the Compatibility Considerations for this
change:

e “Model Load Warnings” on page 42

V6.0
(R14)

See the Compatibility Considerations and
Limitations subheadings for each of these changes:
e “Model Referencing” on page 44

e “MATLAB Data Type Conversions” on page 53

® “Signal Object Resolution Changes” on page 53

® “Loading Models Containing Non-ASCII
Characters” on page 54

® “Change in Sample Time Behavior of Unary
Minus Block” on page 55

® “Initial Output of Conditionally Executed
Subsystems” on page 55

e “Execution Context Default Changes” on page 55

® “Internal Signal Structures Revamped” on page
51

V5.0.1
(R13.0.1)

See the Compatibility Considerations
subheading for this change:

e “Tunable Parameters for Unified Fixed-Point
Blocks” on page 67

V5.0
(R13)

See the Compatibility Considerations
subheadings for each of these changes:

¢ “Enhanced Diagnostic Viewer” on page 76
¢ “Enhanced Mask Editor” on page 77

® “Model Discretizer” on page 78

105

Simulink® Release Notes

106

Version (Release)

New Features and Changes with Version
Compatibility Impact

V4.1
(R12+)

See the Compatibility Considerations
subheadings for each of these changes:

¢ “Simulink Block Library Reorganization” on page
87

¢ “S-Functions Sorted Like Built-In Blocks” on page
88

e “Added Latched Triggered Subsystems” on page
88

e “Self-Triggering Subsystems Are No Longer
Allowed” on page 89

¢ “Running Simulink 4.1 Models in Simulink 4.0”
on page 89

¢ “Direct Feedthrough Compensation Deprecated”
on page 90

¢ “Improved Invalid Model Configuration
Diagnostics” on page 90

V4.0
(R12)

See the Compatibility Considerations for this
change:

¢ “Port Name Property” on page 102

	toc
	Summary by Version
	About Release Notes
	New Features and Changes
	Version Compatibility Considerations and Limitations
	Fixed Bugs and Known Problems
	Related Documentation at Web Site

	Version 6.5 (R2006b) Simulink
	Model Dependency Viewer
	Enhanced Lookup Table Blocks
	Compatibility Considerations

	Legacy Code Tool
	Simulink Now Uses Internal MATLAB Functions for Math Operations
	Enhanced Integer Support in Math Function Block
	Configuration Set Updates
	Command to Initiate Data Logging During Simulation
	Commands for Obtaining Model and Subsystem Checksums
	Sample Hit Time Adjusting Diagnostic
	Function-Call Models Can Now Run Without Being Referenced
	Signal Builder Supports Printing of Signal Groups
	Method for Comparing Simulink Data Objects
	Unified Font Preferences Dialog Box
	Limitation on Number of Referenced Models Eliminated for Single
	Parameter Objects Can Now Be Used to Specify Model Configuration
	Compatibility Considerations

	Changes to Integrator Block's Level Reset Options
	Compatibility Considerations

	Embedded MATLAB Function Block Features and Changes
	Support for Structures
	Embedded MATLAB Editor Analyzes Code with M-Lint
	New Embedded MATLAB Runtime Library Functions
	New Requirement for Calling MATLAB Functions from Embedded MATLA
	Type and Size Mismatch of Values Returned from MATLAB Functions
	Embedded MATLAB Function Blocks Cannot Output Character Data

	Version 6.4.1 (R2006a+) Simulink
	Version 6.4 (R2006a) Simulink
	Signal Object Initialization
	Icon Shape Property for Logical Operator Block
	Data Type Property of Parameter Objects Now Settable
	Range-Checking for Parameter and Signal Object Values
	Compatibility Considerations

	Expanded Menu Customization
	Bringing the MATLAB Desktop Forward
	Converting Atomic Subsystems to Model References
	Concatenate Block
	Compatibility Considerations

	Model Advisor Changes
	Model Advisor Tasks Introduced
	Model Advisor API

	Built-in Block's Initial Appearance Reflects Parameter Settings
	Compatibility Considerations

	Double-Click Model Block to Open Referenced Model
	Signal Logs Reflect Bus Hierarchy
	Tiled Printing
	Solver Diagnostic Controls
	Diagnostic Added for Multitasking Conditionally Executed Subsyst
	Embedded MATLAB Function Block Features and Changes
	Option to Disable Saturation on Integer Overflow
	Nontunable Option Allows Use of Parameters in Constant Expressio
	Enhanced Support for Fixed-Point Arithmetic
	Support for Integer Division
	New Embedded MATLAB Runtime Library Functions
	Setting FIMATH Cast Before Sum to False No Longer Supported in E
	Type Mismatch of Scalar Output Data in Embedded MATLAB Function
	Implicit Parameter Type Conversions No Longer Supported in Embed
	Fixed-Point Parameters Not Supported
	Embedded MATLAB Function Blocks Require C Compiler for Windows 6

	Version 6.3 (R14SP3) Simulink
	Model Referencing
	New Features and Changes

	Block Enhancements
	Variable Transport Delay, Variable Time Delay Blocks
	Additional Reset Trigger for Discrete-Time Integrator Block
	Input Port Latching Enhancements
	Improved Function-Call Inputs Warning Label

	Modeling Enhancements
	Annotations
	Custom Signal Viewers and Generators
	Model Explorer Search Option
	Using Signal Objects to Assign Signal Properties
	Bus Utility Functions
	Fixed-Point Support in Embedded MATLAB
	Embedded MATLAB Function Editor
	Input Trigger and Function-Call Output Support in Embedded MATLA
	Find Options Added to the Data Object Wizard

	Simulation Enhancements
	Viewing Logged Signal Data
	Importing Time-Series Data
	Using a Variable-Step Solver with Rate Transition Blocks
	Additional Diagnostics
	Data Integrity Diagnostics Pane Renamed, Reorganized
	Improved Sample-Time Independence Error Messages

	User Interface Enhancements
	Model Viewing
	Customizing the Simulink User Interface

	MEX-Files on Windows
	Compatibility Considerations

	Fixed-Point Functions No Longer Supported for Use in Signal Obje
	Compatibility Considerations

	Parameter Object Expressions No Longer Supported in Dialog Boxes
	Compatibility Considerations

	Version 6.2 (R14SP2) Simulink
	Multiple Signals on Single Set of Axes
	Logging Signals to the MATLAB Workspace
	Legends that Identify Signal Traces
	Displaying Tic Labels
	Opening Parameters Dialog Box
	Rootlevel Input Ports
	Compatibility Considerations

	Version 6.1 (R14SP1) Simulink
	Changed Source Dialog Box Behavior
	Changed Model Explorer Source Behavior
	Affected Blocks
	Model Load Warnings
	Compatibility Considerations

	Version 6.0 (R14) Simulink
	Model Explorer
	Configuration Sets
	Configuration Parameters Dialog Box

	Model Referencing
	Model Workspaces
	Implicit Fixed-Step Solver
	The Signal and Scope Manager
	Data Object Type Enhancements
	Block Enhancements
	New Blocks
	Fixed-Point-Capable Blocks
	Port Values Display
	User-Specifiable Sample Times
	Improved Initial Output Handling
	Bus-Capable Nonvirtual Blocks
	Duplicate Input Ports
	Inport/Outport Block Display Options
	Zero- and One-Based Indexing
	Runtime Block API
	Command-Line API to Signal Builder Block

	Signal Enhancements
	Test Point Indicators
	Signal Logging
	Internal Signal Structures Revamped
	Edit-Time Signal Label Propagation
	Bus Editor

	Rate Transition Enhancements
	Rate Transition Block Determines Transition Type Automatically
	Automatic Insertion of Rate Transition Blocks
	User-Specifiable Output Sample Time

	Execution Context Enhancements
	Enabling Execution Context Propagation
	Execution Context Indicator

	Algebraic Loop Minimization
	Level-2 M-File S-Functions
	Panning Model Diagrams
	MATLAB Data Type Conversions
	Compatibility Considerations

	Signal Object Resolution Changes
	Compatibility Considerations

	Loading Models Containing Non-ASCII Characters
	Compatibility Considerations

	Change in Sample Time Behavior of Unary Minus Block
	Compatibility Considerations

	Initial Output of Conditionally Executed Subsystems
	Compatibility Considerations

	Execution Context Default Changes
	Compatibility Considerations

	Version 5.1 (R13SP1) Simulink
	Sample Time Parameters Exposed
	Enhanced Debugger
	Enhanced Debugger Commands
	New Debugger Commands
	Enhanced Debugger Toolbar
	Simulation Loop Pane
	Sorted List Pane

	Context-Sensitive Data Typing of Tunable Parameters
	Change in Simulink Behavior

	Conditional Execution Behavior
	Function-Call Subsystem Enhancements
	External Increment Option Added To For Iterator Block
	Performance Improvements

	Version 5.0.1 (R13.0.1) Simulink
	Tunable Parameters for Unified Fixed-Point Blocks
	Compatibility Considerations

	Version 5.0 (R13) Simulink
	Block Enhancements
	Fixed-Point Block Library
	Lookup Table Editor
	Model Verification Block Library
	Signal Builder Block
	DocBlock
	Rate Transition Block
	Block Library Reorganization
	Model Linearization Blocks
	Data Store Read/Write Block Navigation
	Enhanced S-Function Builder
	Miscellaneous Block Enhancements
	Block Data Type Table

	Simulation Enhancements
	Invalid Loop Highlighting
	Algebraic Loop Highlighting
	Conditional Execution Behavior
	Reorganized Simulation Diagnostics
	Enhanced Diagnostic Viewer

	Modeling Enhancements
	Enhanced Mask Editor
	Including Symbols and Greek Letters in Block Diagrams
	Production Hardware Characteristics
	True Color Support
	Print Details
	Boolean Logic Signals
	Model Discretizer

	Platform Limitations for HP and IBM

	Version 4.1 (R12+) Simulink
	Simulink Editor
	Undo Move
	Undo Subsystem Creation
	Autoconnecting Blocks
	Autorouting Signal Lines
	Displaying Storage Class on Lines
	Save Models in Release 11 Format

	Modeling Enhancements
	Autorouting Option Added to add_line Command
	S-Function Builder
	add_param, delete_param
	Connection Callbacks
	Saving Block User Data in Model Files
	Absolute Tolerance Enhancements
	Block Reduction Enhancements
	Boolean Logic Signals Preference
	Subsystem Semantics Demos
	Enhanced Engine Model Demos
	Setting Block Sorting Priority on Virtual Subsystems
	Using ~ in Filenames on UNIX
	Improved Warning About Slow Signals Feeding the Enable Port of a
	Flagging Function-Call Subsystem Cycles

	Simulink Debugger
	Enhancement to Sorted List Display
	Improved Messages in Accelerated Mode
	Breakpoints on a Function-Call Subsystem
	Displaying and Probing Virtual Blocks
	Stepping Stateflow Charts

	Block Library
	Unified Pulse Generator
	Control Flow Blocks
	Bus Creator
	Sine Wave Block Enhancements
	Enhanced Flip-Flop Blocks
	Additional Data Type Support
	Simulink Block Library Reorganization
	Scope Enhancements
	S-Functions Sorted Like Built-In Blocks

	Triggered Subsystems
	Added Latched Triggered Subsystems
	Self-Triggering Subsystems Are No Longer Allowed

	Running Simulink 4.1 Models in Simulink 4.0
	Compatibility Considerations

	Direct Feedthrough Compensation Deprecated
	Compatibility Considerations

	Improved Invalid Model Configuration Diagnostics
	Compatibility Considerations

	Bug Fixes
	Variable sample time S-functions
	Bus selector detection of duplicated names
	Optimize block memory use
	Miscellaneous fixes to the model loader
	Profiler fixes
	Chirp block fix
	Function-call subsystem bug fixes
	Sorting bug fix
	Fixed handling of grounded/unconnected inputs feeding certain bl

	Version 4.0 (R12) Simulink
	Simulink Editor
	Preferences
	Text Alignment
	UNIX Context Menus
	Library Link Enhancements
	Find Dialog Box
	Model Browser
	Single Window Mode
	Keyboard Navigation
	Enhanced Library Browser
	Help Menus

	Modeling Enhancements
	Hierarchical Variable Scoping
	Matrix Signals
	Simulink Data Objects
	Block Execution Order

	Simulink Debugger
	GUI Debugger Interface

	Block Library
	Product Block
	Gain Block
	Math Function Block
	Reshape Block
	Multiplexing Matrix Signals
	Function Call Iteration Parameter
	Probing Signal Dimensionality
	Configurable Subsystem
	Look-Up Table Blocks
	Polynomial Block
	Signal Specification
	ADA S-Functions
	Bitwise Logical Operator Block
	Atomic Subsystems

	SB2SL
	SB2SL Extends Code Generation Support

	Port Name Property
	Compatibility Considerations

	Compatibility and Limitations Summary for Simulink

